- 一 什么是scrapy?
- Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍。所谓的框架就是一个已经被集成了各种功能(高性能异步下载,队列,分布式,解析,持久化等)的具有很强通用性的项目模板。
- 安装
- linux: pip3 install scrapy
- windows:
- 1) pip3 install wheel
- 2) 下载Twisted (http:
/
/
www.lfd.uci.edu
/
~gohlke
/
pythonlibs
/
#twisted
)
- 3) 进入下载目录, 执行 pip3 install Twisted‑
17.1
.
0
‑cp35‑cp35m‑win_amd64.whl
- 4) pip3 install pywin32
- 5) pip3 install scrapy
- 二 使用
- 1) 创建项目:scrapy startproject 项目名称
- 2) 创建应用程序:
- 先进入项目目录: cd 项目名
- scrapy genspider 应用名 爬取网页的起始url:
- 生成的初始文件
# -*- coding: utf-8 -*-
import scrapy
class SpidermanSpider(scrapy.Spider):
name = 'spiderman' #应用名称
#允许爬取的域名(如果遇到非该域名的url则爬取不到数据)
allowed_domains = ['www.xxx.com']
#起始爬取的url
start_urls = ['http://www.xxx.com/']
#访问起始URL并获取结果后的回调函数,该函数的response参数就是向起始的url发送请求后,获取的响应对象.该函数返回值必须为可迭代对象或者NUll
def parse(self, response):
pass
- settings.py基础配置文件设置:
# USER_AGENT = "" 伪装请求载体身份
# ROBOTSTXT_OBEY = False 可以忽略或者不遵守robots协议
- 简单爬取示例
# -*- coding: utf-8 -*-
import scrapy
class SpidermanSpider(scrapy.Spider):
name = 'spiderman'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/text/']
def parse(self, response):
#xpath为response中的方法,可以将xpath表达式直接作用于该函数中
div_list = response.xpath('//div[@id="content-left"]/div')
for div in div_list:
#xpath函数返回的为列表,列表中存放的数据为Selector类型的数据。我们解析到的内容被封装在了Selector对象中,需要调用extract()函数将解析的内容从Selecor中取出。
author = div.xpath('./div[1]/a[2]/h2/text()').extract_first()
content = div.xpath('./a[1]/div/span//text()').extract()
content = "".join(content)
print(author,content)
- 执行代码命令 : scrapy crawl 上面类中的name (--nolog) 是否显示日志
- 三 scrapy 框架持久化存储
- 1 )基于终端指令的持久化存储
# -*- coding: utf-8 -*-
import scrapy
class SpidermanSpider(scrapy.Spider):
name = 'spiderman'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/text/']
def parse(self, response):
div_list = response.xpath('//div[@id="content-left"]/div')
all_data = []
for div in div_list:
author = div.xpath('./div[1]/a[2]/h2/text()').extract_first()
content = div.xpath('./a[1]/div/span//text()').extract()
content = "".join(content)
dic = {
"author":author,
"content":content
}
all_data.append(dic)
return all_data
- 执行输出指定格式进行存储:将爬取到的数据写入不同格式的文件中进行存储
- 执行命令 :
scrapy crawl 爬虫名称 -o xxxx.csv
.xml
.json
- 2 )基于管道的持久化存储
- scrapy框架中已经为我们专门集成好了高效、便捷的持久化操作功能,我们直接使用即可。
items.py:数据结构模板文件。定义数据属性。
pipelines.py:管道文件。接收数据(items),进行持久化操作。
持久化流程:
1.爬虫文件爬取到数据后,需要将数据封装到items对象中。
2.使用yield关键字将items对象提交给pipelines管道进行持久化操作。
3.在管道文件中的process_item方法中接收爬虫文件提交过来的item对象,然后编写持久化存储的代码将item对象中存储的数据进行持久化存储
4.settings.py配置文件中开启管道
- 爬取Boss网
# -*- coding: utf-8 -*-
import scrapy
from test222.items import Test222Item
class SpidermanSpider(scrapy.Spider):
name = 'spiderman'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.zhipin.com/c101010100/?query=python爬虫&page=1&ka=page-2']
# 解析+管道持久化存储
def parse(self, response):
li_list = response.xpath('//div[@class="job-list"]/ul/li')
for li in li_list:
job_name = li.xpath('.//div[@class="info-primary"]/h3/a/div/text()').extract_first()
salary = li.xpath('.//div[@class="info-primary"]/h3/a/span/text()').extract_first()
company = li.xpath('.//div[@class="company-text"]/h3/a/text()').extract_first()
# 实例化一个item对象
item = Test222Item()
# 将解析到的数据全部封装到item对象中
item["job_name"] = job_name
item['salary'] = salary
item['company'] = company
yield item
import scrapy
class Test222Item(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
job_name = scrapy.Field()
salary = scrapy.Field()
company = scrapy.Field()
class Test222Pipeline(object):
fp = None
def open_spider(self,spider):
print("start....")
self.fp = open("./boss.txt","w",encoding="utf-8")
def close_spider(self,spider):
print("close....")
self.fp.close()
# 爬虫文件每向管道提交一次item,则该方法就会被调用一次.
# 参数:item 就是管道接收到的item类型对象
def process_item(self, item, spider):
print(item)
self.fp.write(item["job_name"] + ":" + item["salary"] + ":" + item["company"] + "\n")
return item
# settings.py
ITEM_PIPELINES = {
'test222.pipelines.Test222Pipeline': 300,
}
- 执行 scrapy crawl spiderman 生成 boss.txt文件
- 3) 基于mysql的管道存储
- 上述案例在管道文件将item对象中的数据值存储到了磁盘中,如果将item数据写入mysql数据库的话,只需要将上述案例中的管道文件修改即可:
import pymysql
class Test222Pipeline(object):
fp = None
def open_spider(self,spider):
print("start....")
self.fp = open("./boss.txt","w",encoding="utf-8")
def close_spider(self,spider):
print("close....")
self.fp.close()
# 爬虫文件每向管道提交一次item,则该方法就会被调用一次.
# 参数:item 就是管道接收到的item类型对象
def process_item(self, item, spider):
print(item)
self.fp.write(item["job_name"] + ":" + item["salary"] + ":" + item["company"] + "\n")
return item
class mysqlPipeline(object):
conn = None
cursor = None
def open_spider(self,spider):
self.conn = pymysql.connect(
host="127.0.0.1",
port=3306,
user="root",
password="",
db="scrapy",
charset="utf8")
print(self.conn)
def process_item(self, item, spider):
self.cursor = self.conn.cursor()
try:
self.cursor.execute('insert into boss values ("%s","%s","%s")' % (item['job_name'], item['salary'], item['company']))
self.conn.commit()
except Exception as e:
print(e)
self.conn.rollback()
def close_spider(self,spider):
self.conn.close()
self.cursor.close()
# settings.py
ITEM_PIPELINES = {
# 'test222.pipelines.Test222Pipeline': 300,
'test222.pipelines.mysqlPipeline': 301,
}
- 4) 基于redis的管道存储
- 同样redis只需要修改如下代码:
class redisPipeline(object):
conn = None
def open_spider(self,spider):
self.conn = Redis(host="127.0.0.1",port=6379)
print(self.conn)
def process_item(self, item, spider):
dic = {
'name':item["job_name"],
'salary':item["salary"],
"company":item["company"]
}
self.conn.lpush("boss",dic)
ITEM_PIPELINES = {
# 'test222.pipelines.Test222Pipeline': 300,
# 'test222.pipelines.mysqlPipeline': 301,
'test222.pipelines.redisPipeline': 302,
}
- 5)分页 scrapy.Request
# -*- coding: utf-8 -*-
import scrapy
from test222.items import Test222Item
class SpidermanSpider(scrapy.Spider):
name = 'spiderman'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.zhipin.com/job_detail/?query=python%E7%88%AC%E8%99%AB&scity=101010100&industry=&position=']
url = "https://www.zhipin.com/c101010100/?query=python爬虫&page=%d&ka=page-2"
page = 1
# 解析+管道持久化存储
def parse(self, response):
li_list = response.xpath('//div[@class="job-list"]/ul/li')
for li in li_list:
job_name = li.xpath('.//div[@class="info-primary"]/h3/a/div/text()').extract_first()
salary = li.xpath('.//div[@class="info-primary"]/h3/a/span/text()').extract_first()
company = li.xpath('.//div[@class="company-text"]/h3/a/text()').extract_first()
# 实例化一个item对象
item = Test222Item()
# 将解析到的数据全部封装到item对象中
item["job_name"] = job_name
item['salary'] = salary
item['company'] = company
yield item
if self.page <=3:
self.page +=1
new_url = format(self.url%self.page)
print(new_url)
# 手动请求发送
yield scrapy.Request(url=new_url,callback=self.parse)
- 四 post请求
# -*- coding: utf-8 -*-
import scrapy
class PostSpider(scrapy.Spider):
name = 'post'
allowed_domains = ['www.xxx.con']
start_urls = ['https://fanyi.baidu.com/sug'] # post请求的url
def start_requests(self): # 当start_urls是Post请求url时 必须重写start_requests
data = {
"kw":"dog"
}
for url in self.start_urls:
yield scrapy.FormRequest(url=url,formdata=data,callback=self.parse)
def parse(self, response):
print(response.text)
- 五 请求传参和日志等级
- 1) 请求传参
- 在某些情况下,我们爬取的数据不在同一个页面中,例如,我们爬取一个电影网站,电影的名称,评分在一级页面,而要爬取的其他电影详情在其二级子页面中。这时我们就需要用到请求传参。
# -*- coding: utf-8 -*-
import scrapy
from test222.items import Test222Item
class MovieSpider(scrapy.Spider):
name = 'movie'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.4567tv.tv/frim/index1.html']
def parse_detail(self, response):
# response.meta返回接收到的meta字典
item = response.meta["item"]
actor = response.xpath('/html/body/div[1]/div/div/div/div[2]/p[3]/a/text()').extract_first()
item["actor"] = actor
yield item
def parse(self, response):
li_list = response.xpath('//li[@class="col-md-6 col-sm-4 col-xs-3"]')
print("111111")
for li in li_list:
item = Test222Item()
name = li.xpath('./div/a/@title').extract_first()
detail_url = 'https://www.4567tv.tv' + li.xpath('./div/a/@href').extract_first()
item["name"] = name
# meta参数:请求传参.meta字典就会传递给回调函数的response参数
yield scrapy.Request(url=detail_url,callback=self.parse_detail,meta={"item":item})
import scrapy
class Test222Item(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
name = scrapy.Field()
actor = scrapy.Field()
#settings:
ITEM_PIPELINES = {
'test222.pipelines.Test222Pipeline': 300,
}
- 最后在管道处查看item即可
- 2) 日志等级 (settings文件)
- 终端执行后 如果有错则会输出错误信息,如果没有,正常执行
LOG_LEVEL = "ERROR"
- 文件存储 (存储到指定文件)
LOG_FILE = "./log.txt"
- 六 五大核心组件工作流程
- 1 引擎(Scrapy)
- 用来处理整个系统的数据流处理, 触发事务(框架核心)
- 2 调度器(Scheduler)
- 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
- 3 下载器(Downloader)
- 用于下载网页内容, 并将网页内容返回给spider(Scrapy下载器是建立在twisted这个高效的异步模型上的)
- 4 爬虫(Spider)
- 爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
- 5 项目管道(Pipeline)
- 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
# -*- coding: utf-8 -*-
# Define here the models for your spider middleware
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/spider-middleware.html
from scrapy import signals
import random
class MiddleproDownloaderMiddleware(object):
user_agent_list = [
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 "
"(KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",
"Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 "
"(KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 "
"(KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 "
"(KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
"Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 "
"(KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 "
"(KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
"Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 "
"(KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 "
"(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
"Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 "
"(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
]
# 可被选用的代理IP
PROXY_http = [
'153.180.102.104:80',
'195.208.131.189:56055',
]
PROXY_https = [
'120.83.49.90:9000',
'95.189.112.214:35508',
]
#拦截所有未发生异常的请求
def process_request(self, request, spider):
# Called for each request that goes through the downloader
# middleware.
# Must either:
# - return None: continue processing this request
# - or return a Response object
# - or return a Request object
# - or raise IgnoreRequest: process_exception() methods of
# installed downloader middleware will be called
#使用UA池进行请求的UA伪装
print('this is process_request')
request.headers['User-Agent'] = random.choice(self.user_agent_list)
print(request.headers['User-Agent'])
# #使用代理池进行请求代理ip的设置
# if request.url.split(':')[0] == 'http':
# request.meta['proxy'] = random.choice(self.PROXY_http)
# else:
# request.meta['proxy'] = random.choice(self.PROXY_https)
return None
#拦截所有的响应
def process_response(self, request, response, spider):
# Called with the response returned from the downloader.
# Must either;
# - return a Response object
# - return a Request object
# - or raise IgnoreRequest
return response
#拦截到产生异常的请求
def process_exception(self, request, exception, spider):
# Called when a download handler or a process_request()
# (from other downloader middleware) raises an exception.
# Must either:
# - return None: continue processing this exception
# - return a Response object: stops process_exception() chain
# - return a Request object: stops process_exception() chain
# 使用代理池进行请求代理ip的设置
print('this is process_exception!')
if request.url.split(':')[0] == 'http':
request.meta['proxy'] = random.choice(self.PROXY_http)
else:
request.meta['proxy'] = random.choice(self.PROXY_https)
- 七 scrapy中应用selenium
在scrapy中使用selenium的编码流程:
1.在spider的构造方法中创建一个浏览器对象(作为当前spider的一个属性)
2.重写spider的一个方法closed(self,spider),在该方法中执行浏览器关闭的操作
3.在下载中间件的process_response方法中,通过spider参数获取浏览器对象
4.在中间件的process_response中定制基于浏览器自动化的操作代码(获取动态加载出来的页面源码数据)
5.实例化一个响应对象,且将page_source返回的页面源码封装到该对象中
6.返回该新的响应对象
from scrapy import signals
from scrapy.http import HtmlResponse
from time import sleep
class Test333DownloaderMiddleware(object):
# Not all methods need to be defined. If a method is not defined,
# scrapy acts as if the downloader middleware does not modify the
# passed objects.
def process_request(self, request, spider):
# Called for each request that goes through the downloader
# middleware.
# Must either:
# - return None: continue processing this request
# - or return a Response object
# - or return a Request object
# - or raise IgnoreRequest: process_exception() methods of
# installed downloader middleware will be called
return None
def process_response(self, request, response, spider):
# Called with the response returned from the downloader.
# Must either;
# - return a Response object
# - return a Request object
# - or raise IgnoreRequest
# 获取动态加载出来的数据
bro = spider.bro
bro.get(url=request.url)
sleep(3)
bro.execute_script('window.scrollTo(0,document.body.scrollHeight)')
# 包含了动态加载出来的新闻数据
page_text = bro.page_source
sleep(3)
return HtmlResponse(url=spider.bro.current_url,body=page_text,encoding="utf-8",request=request)
def process_exception(self, request, exception, spider):
# Called when a download handler or a process_request()
# (from other downloader middleware) raises an exception.
# Must either:
# - return None: continue processing this exception
# - return a Response object: stops process_exception() chain
# - return a Request object: stops process_exception() chain
pass
# -*- coding: utf-8 -*-
import scrapy
from selenium import webdriver
class WangyiSpider(scrapy.Spider):
name = 'wangyi'
# allowed_domains = ['www.xxx.com']
start_urls = ['http://war.163.com/']
def __init__(self):
self.bro = webdriver.Chrome(executable_path=r'D:\pathon 课程\123爬虫\s15day137\s15day137爬虫\day_03_爬虫\chromedriver.exe')
def parse(self, response):
div_list = response.xpath('//div[@class="data_row news_article clearfix "]')
for div in div_list:
title = div.xpath('.//div[@class="news_title"]/h3/a/text()').extract_first()
print(title)
def close(self, spider):
print("关闭")
self.bro.quit()
# settings:
DOWNLOADER_MIDDLEWARES = {
'test333.middlewares.Test333DownloaderMiddleware': 543,
}
- 八 如何提升scrapy爬取数据的i效率:
增加并发:
默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100。
降低日志级别:
在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = ‘INFO’
禁止cookie:
如果不是真的需要cookie,则在scrapy爬取数据时可以禁止cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False
禁止重试:
对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False
减少下载超时:
如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行
来源:oschina
链接:https://my.oschina.net/u/4417275/blog/3631371