问题
I have the following model - this is LSTM + CNN with 3 inputs.
And I built this generator function to train the model using fit_generator (based on this: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly):
class MultiInputDataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, labels, shuffle=True):
'Initialization'
self.batch_size = 8
self.labels = labels
self.list_IDs = list_IDs
self.n_classes = 5
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(list_IDs_temp)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, 1, 3), dtype=object)
y = np.empty((self.batch_size), dtype=object)
# Generate data
for i, ID in enumerate(list_IDs_temp):
X_id = []
x_features = df.iloc[id][et_cols].values #ET_COLS are 14 columns so I get 1X14 here
x_text = df.iloc[id].text_col #x_text is 1X768
x_vid = df.iloc[id].frame_col #x_vid is (3,244,244)
X_id.append(x_features)
X_id.append(x_text)
X_id.append(x_vid)
X[i,] = X_id
y[i] = self.labels[ID]
y_mat = tf.convert_to_tensor(pd.get_dummies(y))
return X, y_mat
training_generator = MultiModelDataGenerator(generator_partition['train'], generator_labels)
validation_generator = MultiModelDataGenerator(generator_partition['val'], generator_labels)
net = build_LSTMCNN_net()
net.compile(keras.optimizers.Adam(0.001),'categorical_crossentropy',metrics=['acc'])
net.fit_generator(generator=training_generator,
validation_data=validation_generator,)
use_multiprocessing=True)#, workers=6)
And I get the error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-38-669153f703e6> in <module>()
net.fit_generator(generator=training_generator,
---> validation_data=validation_generator,)
#use_multiprocessing=True)#, workers=6)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py in convert_to_eager_tensor(value, ctx, dtype)
96 dtype = dtypes.as_dtype(dtype).as_datatype_enum
97 ctx.ensure_initialized()
---> 98 return ops.EagerTensor(value, ctx.device_name, dtype)
99
100
ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type numpy.ndarray).
I also tried several variations such as adding:
x_features = np.asarray(x_features).astype(object)
x_text = np.asarray(x_text).astype(object)
x_vid = np.asarray(x_text).astype(object)
Or X[i,] = [X_id]
instead of X[i,] = X_id
But none worked
Any idea how to fix the problem?
Edited: When adding:
astype(np.float32)
andtf.convert_to_tensor(X)
I get the error: ValueError Traceback (most recent call last) in ()
net.fit_generator(generator=training_generator,
---> validation_data=validation_generator,
use_multiprocessing=True, workers=6)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/constant_op.py in convert_to_eager_tensor(value, ctx, dtype)
dtype = dtypes.as_dtype(dtype).as_datatype_enum
ctx.ensure_initialized()
---> return ops.EagerTensor(value, ctx.device_name, dtype)
回答1:
Before solving the problem, let's first summarize the dataset that you're working with. Based on your description, I created an example DataFrame
that might resemble yours
import pandas as pd
dataset_size = 500
train_idx,val_idx = train_test_split(range(dataset_size),test_size=0.2,)
# create an example DataFrame that I assume will be resemble yours
example_df = pd.DataFrame({'vids':np.random.randint(0,10000,dataset_size)})
# create feature columns
for ind in range(14): example_df['feature_%i' % ind] = np.random.rand(dataset_size)
# each cell contains a list
example_df['text'] = np.random.randint(dataset_size)
example_df['text'] = example_df['text'].astype('object')
for ind in range(dataset_size):example_df.at[ind,'text'] = np.random.rand(768).tolist()
# create the label column
example_df['label'] = np.random.randint(low=0,high=5,size=dataset_size)
# extract information from the dataframe, and create data generators
all_vids = example_df['vids'].values
feature_columns = ['feature_%i' % ind for ind in range(14)]
all_features = example_df[feature_columns].values
all_text = example_df['text'].values
all_labels = example_df['label'].values
As you can see, the column text
is a column of lists, in which each list contains 768 items. The column labels
contains the labels of the examples, it doesn't matter whether you use one-hot encoding or other types of encoding, as long as its shape matches the shape of the output layer of the overall neural network model. The column vids
is a column of seed
s for generating random images on the fly.
Solving the problem (based on the above dataset)
You can use this syntax return {'feature':features,'text':text,'vid':vid},y
for the method __getitem__
, instead of stacking the three input arrays.
To explain this, let's first construct a toy model resembles yours
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input,Dense,Flatten,Add
def features_part(x):
y = Dense(14)(x)
y = Dense(10,activation='linear')(y)
return y
def text_part(x):
y = Dense(768)(x)
y = Dense(10,activation='linear')(y)
return y
def vid_part(x):
y = Flatten()(x)
y = Dense(10,activation='linear')(y)
return y
input_features = Input(shape=(14,),name='feature')
input_text = Input(shape=(768,),name='text')
input_vid = Input(shape=(3,244,244,),name='vid')
feature_block = features_part(input_features)
text_block = text_part(input_text)
vid_block = vid_part(input_vid)
added = Add()([feature_block,text_block,vid_block])
# you have five classes at the end of the day
pred = Dense(1)(added)
# build model
model = Model(inputs=[input_features,input_text,input_vid],outputs=pred)
model.compile(loss='mae',optimizer='adam',metrics=['mae'])
The most important thing about this model is, I specified the names of the three input layers
input_features = Input(shape=(14,),name='feature')
input_text = Input(shape=(768,),name='text')
input_vid = Input(shape=(3,244,244,),name='vid')
For this model, you can construct a generator like
# provide a seed for generating a random image
def fn2img(seed):
np.random.seed(seed)
# fake an image with three channels
return np.random.randint(low=0,high=255,size=(3,244,244))
class MultiInputDataGenerator(keras.utils.Sequence):
def __init__(self,
all_inds,labels,
features,text,vid,
shuffle=True):
self.batch_size = 8
self.labels = labels
self.all_inds = all_inds
self.shuffle = shuffle
self.on_epoch_end()
self.features = features
self.text = text
self.vid = vid
def __len__(self):
return int(np.floor(len(self.all_inds) / self.batch_size))
def __getitem__(self,index):
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
batch_indices = [self.all_inds[k] for k in indexes]
features,text,vid,y = self.__data_generation(batch_indices)
return {'feature':features,'text':text,'vid':vid},y
def on_epoch_end(self):
self.indexes = np.arange(len(self.all_inds))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self,batch_indices):
# Generate data
features = self.features[batch_indices,:]
# note that you need to stack the slice in order to reshape it to (num_samples,768)
text = np.stack(self.text[batch_indices])
# since batch_size is not a super large number, you can stack here
vid = np.stack([fn2img(seed) for seed in self.vid[batch_indices]])
y = self.labels[batch_indices]
return features,text,vid,y
as you can see, the __getitem__
method returns a dictionary {'feature':features,'text':text,'vid':vid},y
. The keys of the dictionary match the names of the three input layers. Moreover, the random images are generated on the fly.
In order to make sure everything works, you can run the script below,
import numpy as np
import pandas as pd
from tensorflow import keras
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input,Dense,Flatten,Add
# provide a seed for generating a random image
def fn2img(seed):
np.random.seed(seed)
# fake an image with three channels
return np.random.randint(low=0,high=255,size=(3,244,244))
class MultiInputDataGenerator(keras.utils.Sequence):
def __init__(self,
all_inds,labels,
features,text,vid,
shuffle=True):
self.batch_size = 8
self.labels = labels
self.all_inds = all_inds
self.shuffle = shuffle
self.on_epoch_end()
self.features = features
self.text = text
self.vid = vid
def __len__(self):
return int(np.floor(len(self.all_inds) / self.batch_size))
def __getitem__(self,index):
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
batch_indices = [self.all_inds[k] for k in indexes]
features,text,vid,y = self.__data_generation(batch_indices)
return {'feature':features,'text':text,'vid':vid},y
def on_epoch_end(self):
self.indexes = np.arange(len(self.all_inds))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self,batch_indices):
# Generate data
features = self.features[batch_indices,:]
# note that you need to stack the slice in order to reshape it to (num_samples,768)
text = np.stack(self.text[batch_indices])
# since batch_size is not a super large number, you can stack here
vid = np.stack([fn2img(seed) for seed in self.vid[batch_indices]])
y = self.labels[batch_indices]
return features,text,vid,y
# fake a dataset
dataset_size = 500
train_idx,val_idx = train_test_split(range(dataset_size),test_size=0.2,)
# create an example DataFrame that I assume will be resemble yours
example_df = pd.DataFrame({'vids':np.random.randint(0,10000,dataset_size)})
# create feature columns
for ind in range(14): example_df['feature_%i' % ind] = np.random.rand(dataset_size)
# each cell contains a list
example_df['text'] = np.random.randint(dataset_size)
example_df['text'] = example_df['text'].astype('object')
for ind in range(dataset_size):example_df.at[ind,'text'] = np.random.rand(768).tolist()
# create the label column
example_df['label'] = np.random.randint(low=0,high=5,size=dataset_size)
# extract information from the dataframe, and create data generators
all_vids = example_df['vids'].values
feature_columns = ['feature_%i' % ind for ind in range(14)]
all_features = example_df[feature_columns].values
all_text = example_df['text'].values
all_labels = example_df['label'].values
training_generator = MultiInputDataGenerator(train_idx,all_labels,all_features,all_text,all_vids)
# create model
def features_part(x):
y = Dense(14)(x)
y = Dense(10,activation='linear')(y)
return y
def text_part(x):
y = Dense(768)(x)
y = Dense(10,activation='linear')(y)
return y
def vid_part(x):
y = Flatten()(x)
y = Dense(10,activation='linear')(y)
return y
input_features = Input(shape=(14,),name='feature')
input_text = Input(shape=(768,),name='text')
input_vid = Input(shape=(3,244,244,),name='vid')
feature_block = features_part(input_features)
text_block = text_part(input_text)
vid_block = vid_part(input_vid)
added = Add()([feature_block,text_block,vid_block])
# you have five classes at the end of the day
pred = Dense(1)(added)
# build model
model = Model(inputs=[input_features,input_text,input_vid],outputs=pred)
model.compile(loss='mae',optimizer='adam',metrics=['mae'])
model.fit_generator(generator=training_generator,epochs=10)
print(model.history.history)
来源:https://stackoverflow.com/questions/64524078/python-cant-apply-fit-generator-to-keras-model-with-multiple-input