题意
有\(T\)组样例,第二行给\(n\),\(m\),分别为点的个数和询问个数,接下来\(n-1\)行为边,之后是\(m\)行询问
询问有三种,\(1\) \(x\) \(w\), 表示点\(x\)增加\(w\),其他所有点增减\(w-dis(x,y)\)(点\(y\)树上到\(x\)的距离)
\(2\) \(x\),表示将点\(x\)的权值变为\(min(F(x), 0)\)
\(3\) \(x\),表示询问\(x\)的权值\(F(x)\)
解法
对整颗树进行树链剖分(对各点做标记的部分只有两个dfs而已,不是很难),之后将重新标号的点映射到线段树上,并用线段树维护每个点的权值(除了2操作可以使用另外一个数组来维护每个点被减去的权值),操作1我们只需要维护一个全局变量,然后对x到根上所有的点的点权全部+2,这样我们就可以假装所有的1操作都是在根上操作的了( ̄▽ ̄)/。最后计算结果时的式子为\(addw[x] - 1ll * cnt1 * dep[x] + golbal_wt + queryPath(1, x)\) 就是\(2\)操作的修改值 \(-\) 之前\(1\)操作的次数 \(*\) \(x\)的深度 \(+\) 全局权值 \(+\) 树上\(1\)到\(x\)的点权
先拿例题中的图举例
首先将树剖成三条链
经过操作\(1\) \(1\) \(5\)之后,全局变量变为\(4\),\(1\)的点权变为\(2\),又经过\(2\) \(1\), \(1\)的点权修正值为\(-5\)
再经过\(1\) \(2\) \(7\)之后,\(1\), \(2\)的点权继续加\(2\),全局变量\(+ 5 = 9\)
这样操作的时候,比如你要求点\(3\)的值,就是\(全局权重-dep[3] * 2 + queryPath(1,3) = 9\), 因为有两次操作\(1\),而权值公式为\(w-dis(x,y)\),所以减去两次\(dep[3]\),最后我们补上多减的值就是了。
又比如我们询问\(2\), 权值如上计算是\(11\),按照最基本的式子原本应该是\(全局权重-cnt1*dep[2]\), 而因为\(1\),\(2\)都曾进行过一次操作,我们应该将操作点移到根后点\(2\)失去的贡献加回来,也就是每经过一个点,我们就将权重\(+2\)
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 5e4 + 7;
int t;
int n, m, u, v, op, w;
int head[N], cnte = 0, idx = 0;
int dep[N], dfn[N], fa[N], top[N], wson[N], siz[N], id[N];
ll addw[N], global_wt;
struct Edge{
int to, nxt, val;
} edge[N << 1];
void addedge(int u, int v)
{
edge[++cnte].nxt = head[u];
edge[cnte].to = v;
edge[cnte].val = 0;
head[u] = cnte;
}
struct segment_tree
{
#define lson rt << 1
#define rson rt << 1 | 1
ll sum[N << 2], add[N << 2];
void udp(int rt, ll v, int l, int r)
{
sum[rt] += (r - l + 1ll) * v;
add[rt] += v;
}
void build(int l, int r, int rt)
{
sum[rt] = add[rt] = 0;
if (l == r) return;
int mid = (l + r) >> 1;
build(l, mid, lson);
build(mid + 1, r, rson);
}
void push_down(int rt, int l, int r)
{
if(add[rt])
{
int mid = (l + r) >> 1;
udp(lson, add[rt], l, mid);
udp(rson, add[rt], mid + 1, r);
add[rt] = 0;
}
}
void update(int L, int R, ll c, int l, int r, int rt)
{
if (L == l && r == R )
{
udp(rt, c, l, r);
return;
}
int mid = (l + r) >> 1;
push_down(rt, l, r);
if (L <= mid) update(L, min(R,mid), c, l, mid, lson);
if (R > mid) update(max(L,mid + 1), R, c, mid + 1, r, rson);
sum[rt] = sum[lson] + sum[rson];
}
ll query(int L, int R, int l, int r, int rt)
{
if (L == l && r == R) return sum[rt];
int mid = (l + r) >> 1;
push_down(rt, l, r);
ll res = 0;
if (R <= mid) res += query(L, R, l, mid, lson);
else if (L > mid) res += query(L, R, mid + 1, r, rson);
else return query(L, mid, l, mid, lson) + query(mid + 1, R, mid + 1, r, rson);
}
} tree;
void init()
{
cnte = 0;
idx = 0;
global_wt = 0;
fill(head, head + N, 0);
fill(fa, fa + N, 0);
fill(siz, siz + N, 0);
fill(wson, wson + N, 0);
fill(addw, addw + N, 0);
}
void dfs1(int u)
{
siz[u] = 1;
for (int i = head[u]; i;i = edge[i].nxt)
{
int v = edge[i].to;
if(v == fa[u]) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
dfs1(v);
siz[u] += siz[v];
if(siz[v] > siz[wson[u]]) wson[u] = v;
}
}
void dfs2(int u, int chain)
{
id[u] = ++idx, dfn[idx] = u;
top[u] = chain;
if(wson[u] != 0) dfs2(wson[u], chain);
for (int i = head[u]; i; i = edge[i].nxt)
{
int v = edge[i].to;
if(v == fa[u] || v == wson[u]) continue;
dfs2(v, v);
}
}
void udpPath(int u, int v, int val)
{
while(top[u] != top[v])
{
if(dep[top[u]] < dep[top[v]]) swap(u, v);
tree.update(id[top[u]], id[u], val, 1, n, 1);
u = fa[top[u]];
}
if(dep[u] < dep[v]) swap(u, v);
tree.update(id[v], id[u], val, 1, n, 1);
}
ll queryPath(int u, int v)
{
ll res = 0;
while(top[u] != top[v])
{
if(dep[top[u]] < dep[top[v]]) swap(u, v);
res += tree.query(id[top[u]], id[u], 1, n, 1);
u = fa[top[u]];
}
if(dep[u] < dep[v]) swap(u, v);
res += tree.query(id[v], id[u], 1, n, 1);
return res;
}
void solve()
{
scanf("%d %d", &n, &m);
for (int i = 1; i < n; i++)
{
scanf("%d %d", &u, &v);
addedge(u, v);
addedge(v, u);
}
tree.build(1, n, 1);
dep[1] = 1;
dfs1(1);
dfs2(1, 1);
int cnt1 = 0;
while(m--)
{
scanf("%d", &op);
if(op == 1)
{
scanf("%d %d", &u, &w);
global_wt += w;
global_wt -= dep[u];
cnt1++;
udpPath(1, u, 2);
}
else if(op == 2)
{
scanf("%d", &u);
ll weight = addw[u] - 1ll * cnt1 * dep[u] + global_wt + queryPath(1, u);
if(weight > 0) addw[u] -= weight;
}
else
{
scanf("%d", &u);
ll weight = addw[u] - 1ll * cnt1 * dep[u] + global_wt + queryPath(1, u);
printf("%lld\n", weight);
}
}
}
int main()
{
scanf("%d", &t);
while(t--)
{
init();
solve();
}
return 0;
}
来源:oschina
链接:https://my.oschina.net/u/4303535/blog/4464029