问题
Many papers use very nice images of neural networks. I also like to create such an image for a report which i'm writing.
An example: "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation" from V. Badrinarayanan et al., page 4
https://arxiv.org/pdf/1511.00561v3.pdf
My question: Which tool might be used to create such images? Especially the convvolution rectangles look very nice.
Thank you very much
回答1:
I wrote a small class which helps to draw such images. Probably i will extend and clean it up soon.
It is possible to define some layers (colors / type), draw them and to add some connections between them. The output is a svg file.
Example output
Code (at the end (seeif __name__ == '__main__'
) there is the code to generate the image above):
import svgwrite
import math
def layer_def(type, height, id=None):
return {
'type': type,
'height': height,
'id': id
}
class CNNDraw:
def __init__(self, dwg):
self.__dwg = dwg
def draw_arrow(self, p_points, width=2, color='black'):
marker = self.__dwg.marker(insert=(2.1, 2), size=(2, 4), orient='auto')
marker.add(self.__dwg.path(d='M0,0 V4 L2,2 Z', fill=color))
self.__dwg.defs.add(marker)
line = self.__dwg.add(svgwrite.shapes.Polyline(
p_points, stroke_width=width,
stroke='black', fill='none'))
line.set_markers((self.__dwg.marker(), self.__dwg.marker(), marker))
def draw_3d_rectangle(self, p_start, width, height, stretch, fg_color='white', bg_color='grey', border_color='black'):
x_start, y_start = p_start
x_end, y_end = x_start + width, y_start + height
polygon1 = [(x_start, y_start), (x_start + width, y_start), (x_start + width, y_start + height), (x_start, y_start + height)]
polygon2 = [(x_start, y_start), (x_start + stretch, y_start - stretch), (x_end + stretch, y_start - stretch), (x_end, y_start)]
polygon3 = [(x_end, y_start), (x_end + stretch, y_start - stretch), (x_end + stretch, y_end - stretch), (x_end, y_end)]
self.__dwg.add(svgwrite.shapes.Polygon(polygon1, fill=fg_color, stroke=border_color))
self.__dwg.add(svgwrite.shapes.Polygon(polygon2, fill=bg_color, stroke=border_color))
self.__dwg.add(svgwrite.shapes.Polygon(polygon3, fill=bg_color, stroke=border_color))
def draw_multiple_layers(self, p_start, p_stretch=0.4, layer_width=10, space_width=7, layers=[], return_hash=True): # layers = (height, color)
if len(layers) == 0:
return
max_height = max(map(lambda l: l[1], filter(lambda l: isinstance(l, tuple), layers)))
x_offset = 0
side_width_before = 0
drawn_polygons = []
for n in xrange(len(layers)):
layer = layers[n]
if not isinstance(layer, tuple):
x_offset += layer
continue
id, height, fg_color, bg_color = layer
side_width = math.floor(height * p_stretch)
total_width = side_width + layer_width
if n > 0:
space_offset = space_width
if total_width < side_width_before:
space_offset = math.floor((side_width_before - total_width) * 0.5)
space_offset = max(space_width, space_offset)
pass
x_offset += space_offset
curr_p_start = (p_start[0] + x_offset, p_start[1] + math.floor((max_height - height) * 0.5))
self.draw_3d_rectangle(curr_p_start, layer_width, height, side_width, fg_color, bg_color)
drawn_polygons.append((id, curr_p_start, layer_width, height, side_width))
side_width_before = side_width
x_offset += layer_width
if return_hash:
polygons = {}
for polygon in filter(lambda l: l[0] is not None, drawn_polygons):
polygons[polygon[0]] = polygon[1:]
drawn_polygons = polygons
return drawn_polygons
def draw_multiple_defined_layers(self, p_start, layer_definitions={}, layers=[]):
plain_layers = []
for layer in layers:
if not isinstance(layer, dict):
plain_layers.append(layer)
else:
layer_definition = layer_definitions[layer['type']]
if 'ignore' in layer_definition and layer_definition['ignore']:
continue
plain_layer = (layer['id'], layer['height'], layer_definition['fg_color'], layer_definition['bg_color'])
if 'add_space_before' in layer_definition:
plain_layers.append(layer_definition['add_space_before'])
plain_layers.append(plain_layer)
if 'add_space_after' in layer_definition:
plain_layers.append(layer_definition['add_space_after'])
return self.draw_multiple_layers(p_start, layers=plain_layers)
def draw_arrow_between_points(self, source_point, target_point, text=None, y_delta=10, bottom=False):
if not bottom:
y = min(source_point[1], target_point[1]) - y_delta
else:
y = max(source_point[1], target_point[1]) + y_delta
source_delta = source_point[1] - y
target_delta = target_point[1] - y
if not bottom:
mp0 = (source_point[0] + source_delta, source_point[1] - source_delta)
mp1 = (target_point[0] - target_delta, target_point[1] - target_delta)
else:
mp0 = (source_point[0] - source_delta, source_point[1] - source_delta)
mp1 = (target_point[0] + target_delta, target_point[1] - target_delta)
points = [
source_point,
mp0, mp1,
target_point,
]
self.draw_arrow(points)
# If required: Draw the text
if text is not None:
text_lines = text.split('\n')
line_height = 15
mp_middle = (math.floor((mp0[0] + mp1[0]) * 0.5), math.floor((mp0[1] + mp1[1]) * 0.5))
if not bottom:
y_offset = -10 - line_height * (len(text_lines) - 1)
else:
y_offset = 13
for text_line in text_lines:
mp_text = (mp_middle[0], mp_middle[1] + y_offset)
self.__dwg.add(self.__dwg.text(text_line, insert=mp_text, text_anchor="middle", style="font-family:Sans-Serif"))
y_offset += line_height
def draw_arrow_between_layers(self, source_layer, target_layer, text=None, y_delta=10):
source_point = (source_layer[0][0] + source_layer[1] + source_layer[3], source_layer[0][1] - source_layer[3])
target_point = (target_layer[0][0] + target_layer[3], target_layer[0][1] - target_layer[3])
self.draw_arrow_between_points(source_point, target_point, text, y_delta)
def draw_additive_arrow_between_layers(self, source_layers, target_layer, text=None, y_delta=10, y_add=0, bottom=True):
if bottom:
target_point = (target_layer[0][0], target_layer[0][1] + target_layer[2])
# Get the source points
sp0 = min(map(lambda l: (l[0][0] + math.floor(l[1] * 0.5), l[0][1] + l[2]), source_layers), key=lambda l: l[0])
sp1 = max(map(lambda l: (l[0][0] + math.floor(l[1] * 0.5), l[0][1] + l[2]), source_layers), key=lambda l: l[0])
sp_y = max(map(lambda l: l[0][1] + l[2], source_layers)) + 5
sp0d = (sp0[0], sp_y + y_add)
sp1d = (sp1[0], sp_y + y_add)
else:
target_point = (target_layer[0][0] + target_layer[3], target_layer[0][1] - target_layer[3])
# Get the source points
sp0 = min(map(lambda l: (l[0][0] + l[3] + math.floor(l[1] * 0.5), l[0][1] - l[3]), source_layers), key=lambda l: l[0])
sp1 = max(map(lambda l: (l[0][0] + l[3] + math.floor(l[1] * 0.5), l[0][1] - l[3]), source_layers), key=lambda l: l[0])
sp_y = min(map(lambda l: l[0][1] - l[3], source_layers)) - 5
sp0d = (sp0[0], sp_y - y_add)
sp1d = (sp1[0], sp_y - y_add)
self.__dwg.add(svgwrite.shapes.Polyline([sp0, sp0d], stroke_width=2, stroke='black', fill='none'))
self.__dwg.add(svgwrite.shapes.Polyline([sp1, sp1d], stroke_width=2, stroke='black', fill='none'))
if bottom:
mp0 = (sp0d[0] + y_delta, sp0d[1] + y_delta)
mp1 = (sp1d[0] - y_delta, sp1d[1] + y_delta)
else:
mp0 = (sp0d[0] + y_delta, sp0d[1] - y_delta)
mp1 = (sp1d[0] - y_delta, sp1d[1] - y_delta)
mp_middle = (math.floor((mp0[0] + mp1[0]) * 0.5), math.floor((mp0[1] + mp1[1]) * 0.5))
# Draw the first line
self.__dwg.add(svgwrite.shapes.Polyline(
[sp0d, mp0, mp1, sp1d], stroke_width=2,
stroke='black', fill='none'))
# And now the line itself
self.draw_arrow_between_points(mp_middle, target_point, text, y_delta, bottom=bottom)
if __name__ == '__main__':
dwg = svgwrite.Drawing('test.svg')
cnn_draw = CNNDraw(dwg)
# Draw multiple layers
layer_polygons = cnn_draw.draw_multiple_defined_layers((100, 200), { # Start coordinate
# Define several layer types
'dropout': {'fg_color': '#ffffcc', 'bg_color': '#ffff99', 'ignore': True},
'conv': {'fg_color': '#e6faff', 'bg_color': '#99ebff'},
't_conv': {'fg_color': '#ffe6cc', 'bg_color': '#ffcc99'},
'pool': {'fg_color': '#ccffcc', 'bg_color': '#99ff99', 'add_space_after': 20},
'upscale': {'fg_color': '#e6ccff', 'bg_color': '#cc99ff'}
}, [
# The layers to draw; as can be seen a layer can have an id
layer_def('dropout', 300),
layer_def('conv', 300),
layer_def('conv', 300),
layer_def('pool', 300, id='POOL1'),
layer_def('dropout', 250),
layer_def('conv', 250),
layer_def('conv', 250),
layer_def('pool', 250, id='POOL2'),
layer_def('dropout', 200),
layer_def('conv', 200),
layer_def('conv', 200),
layer_def('pool', 200, id='POOL3'),
layer_def('dropout', 150),
layer_def('conv', 150),
layer_def('conv', 150),
layer_def('pool', 150, id='POOL4'),
layer_def('dropout', 100),
layer_def('conv', 100),
layer_def('conv', 100),
layer_def('pool', 100, id='POOL5'),
layer_def('dropout', 50),
layer_def('conv', 50),
layer_def('conv', 50),
layer_def('pool', 50, id='POOL6'),
layer_def('dropout', 30),
layer_def('conv', 30, id='FINAL'),
# Plain numbers are just space
100,
layer_def('t_conv', 50, id='T_CONV1'),
60,
layer_def('t_conv', 100, id='T_CONV2'),
60,
layer_def('t_conv', 150, id='T_CONV3'),
60,
layer_def('t_conv', 250, id='T_CONV4'),
layer_def('conv', 250),
layer_def('conv', 250),
layer_def('conv', 250),
layer_def('dropout', 250),
layer_def('conv', 250),
layer_def('conv', 250, id='FINAL_CONV'),
50,
layer_def('upscale', 300, id='UPSCALED')
])
cnn_draw.draw_arrow_between_layers(layer_polygons['FINAL'], layer_polygons['T_CONV1'], text="transposed conv.")
cnn_draw.draw_additive_arrow_between_layers([layer_polygons['POOL5'], layer_polygons['T_CONV1']], layer_polygons['T_CONV2'], text="element-wise sum and\ntransposed conv.", y_add=0)
cnn_draw.draw_additive_arrow_between_layers([layer_polygons['POOL4'], layer_polygons['T_CONV2']], layer_polygons['T_CONV3'], text="element-wise sum and\ntransposed conv.", y_add=0, bottom=False)
cnn_draw.draw_additive_arrow_between_layers([layer_polygons['POOL3'], layer_polygons['T_CONV3']], layer_polygons['T_CONV4'], text="element-wise sum and\ntransposed conv.", y_add=0)
cnn_draw.draw_arrow_between_layers(layer_polygons['FINAL_CONV'], layer_polygons['UPSCALED'], text="upscale")
dwg.save()
回答2:
if you want to achieve program code then D3.js is the best solution which will give you svg image clear clean as you want .also you can put maths logic there .
来源:https://stackoverflow.com/questions/40604283/create-image-of-neural-network-structure