Mapply error after updating R and tidyverse

蹲街弑〆低调 提交于 2020-06-17 09:35:10

问题


I have been working on a rejection sampling code using several loops. After updating R and tidyverse I found that the code no longer works, displaying the following error:

Error: Assigned data `mapply(...)` must be compatible with existing data.
i Error occurred for column `sampled`.
x Can't convert from <integer> to <logical> due to loss of precision.
* Locations: 1.
Run `rlang::last_error()` to see where the error occurred.
In addition: Warning message:
In seq.default(x, y, na.rm = TRUE) :
 extra argument ‘na.rm’ will be disregarded

The code worked previously, and is related to a previous question, linked [here][1]. I have tried to work through (avoid) the issue by using older versions of R (3.6) and tidyverse (1.3.0), but now I have some additional packages that I need to use which are incompatible with older versions of R. I'm not looking to rework the entire code, and I hoping that it will only take a few tweaks to get it working with the newer versions of R and tidyverse.

Edit I made a mistake regarding the initial df I provided for this question. Columns ID, After_1, and After_2 should have contained a combination of letters and numbers instead of only numbers. The example df has been updated.

Here is a modified code example that is displaying the same errors as my actual code:

df <- dfsource
temp_df<-df #temp_pithouse_join used for dynamically created samples
temp_df$sampled <- NA #blanking out the sample column so I can check against NA for the dynamic detereminatination.
temp_df %>% mutate_if(is.factor, as.character) -> temp_df #change factors to characters

for (i in 1:100){ #determines how many iterations to run

  row_list<-as.list(1:nrow(temp_df))
  q<-0

  while(length(row_list)!=0 & q<10){
    q<-q+1 #to make sure that we don't spinning off in an infinite loop
    for(j in row_list){ #this loop replaces the check values
      skip_flag<-FALSE #initialize skip flag used to check the replacement sampling
      for(k in 4:5){ #checking the topoafter columns
        if(is.na(temp_df[j,k])){ 
          # print("NA break")
          # print(i)
          break
        } else if(is.na(as.integer(temp_df[j,k]))==FALSE) { #if it's already an integer, well, a character vector containing an integer, we already did this, next
          # print("integer next")
          next
          # print("integer next")
        } else if(temp_df[j,k]==""){ #check for blank values
          # print("empty string next")
          temp_df[j,k]<-NA #if blank value found, replace with NA
          # print("fixed blank to NA")
          next 
        }
        else if(is.na(filter(temp_df,ID==as.character(temp_df[j,k]))["sampled"])) { #if the replacement has not yet been generated, move on, but set flag to jump this to the end
          skip_flag<-TRUE
          # print("skip flag set")
        } else {
          temp_df[j,k]<-as.integer(filter(temp_df,ID==temp_df[j,k])[6]) #replacing IDs with the sampled dates of those IDs
          # print("successful check value grab")
        } #if-else
      } #k for loop
      if(skip_flag==FALSE){
        row_list<-row_list[row_list!=j]
      } else {
        next 
      }

      #sampling section
      if(skip_flag==FALSE){
        temp_df[j,6]<-mapply(function(x, y) if(any(is.na(x) || is.na(y))) NA else 
          sample(seq(x, y, na.rm = TRUE), 1), temp_df[j,"Start"], temp_df[j,"End"])
        temp_df[j,7]<-i #identifying the run number

        if(any(as.numeric(temp_df[j,4:5])>as.numeric(temp_df[j,6]),na.rm=TRUE)){
          # print(j)
          while(any(as.numeric(temp_df[j,4:5])>as.numeric(temp_df[j,6]),na.rm=TRUE)){
            temp_df[j,6]<-mapply(function(x, y) if(any(is.na(x) || is.na(y))) NA else 
              sample(seq(x, y, na.rm = TRUE), 1), temp_df[j,"Start"], temp_df[j,"End"])
          } #while 
          temp_df[j,7]=i 
        }#if
      }
    } #j for loop
  } #while loop wrapper around j loop
  if(i==1){
    df2<-temp_df
  }else{
    df2<-rbind(df2,temp_df)
  }#else

  #blank out temp_df to prepare for another run
  temp_df<-df
  temp_df$sampled <- NA 
  temp_df %>% mutate_if(is.factor, as.character) -> temp_df 

}#i for loop

And here is the sample data to use which I would read in as dfsource:

structure(list(ID = c("A1", "A2", "A3", "A4", "A5", "A6", "A7", 
"A8", "A9", "A10", "A11", "A12", "A13", "A14", "A15", "A16", 
"A17", "A18", "A19", "A20", "A21", "A22", "A23", "A24", "A25", 
"A26", "A27", "A28", "A29", "A30"), Start = c(1, 1, 1, 1, 1, 
50, 50, 50, 50, 50, 100, 100, 100, 100, 100, 200, 200, 300, 250, 
350, 300, 300, 400, 500, 400, 400, 450, 500, 550, 500), End = c(1000, 
1000, 1000, 1000, 1000, 950, 950, 950, 950, 950, 1000, 1000, 
1000, 1000, 900, 800, 900, 750, 650, 650, 600, 850, 700, 600, 
600, 700, 550, 550, 600, 550), After_1 = c("A3", "", "", "", 
"A3", "", "", "", "", "", "", "A11", "", "A11", "", "", "", "", 
"", "", "", "A21", "", "", "", "", "", "", "", "A28"), After_2 = c("", 
"", "", "", "A2", "", "", "", "", "", "", "", "", "A12", "", 
"", "", "", "", "", "", "", "", "", "", "", "", "", "", ""), 
    sampled = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA)), class = c("spec_tbl_df", "tbl_df", "tbl", "data.frame"
), row.names = c(NA, -30L), spec = structure(list(cols = list(
    ID = structure(list(), class = c("collector_character", "collector"
    )), Start = structure(list(), class = c("collector_double", 
    "collector")), End = structure(list(), class = c("collector_double", 
    "collector")), After_1 = structure(list(), class = c("collector_character", 
    "collector")), After_2 = structure(list(), class = c("collector_character", 
    "collector")), sampled = structure(list(), class = c("collector_logical", 
    "collector"))), default = structure(list(), class = c("collector_guess", 
"collector")), skip = 1), class = "col_spec"))```





  [1]: https://stackoverflow.com/questions/58653809/sample-using-start-and-end-values-within-a-loop-in-r

回答1:


EDIT: Initialize sampled as NA_integer_:

temp_df<-df #temp_pithouse_join used for dynamically created samples
temp_df$sampled <- NA_integer_ #blanking out the sample column so I can check against NA for the dynamic detereminatination.
temp_df %>% mutate_if(is.factor, as.character) -> temp_df #change factors to characters

for (i in 1:100){ #determines how many iterations to run

    row_list<-as.list(1:nrow(temp_df))
    q<-0

    while(length(row_list)!=0 & q<10){
        q<-q+1 #to make sure that we don't spinning off in an infinite loop
        for(j in row_list){ #this loop replaces the check values
            skip_flag<-FALSE #initialize skip flag used to check the replacement sampling
            for(k in 4:5){ #checking the topoafter columns
                if(is.na(temp_df[j,k])){ 
                    break
                } else if(is.na(as.integer(temp_df[j,k]))==FALSE) { #if it's already an integer, well, a character vector containing an integer, we already did this, next
                    # print("integer next")
                    next
                    # print("integer next")
                } else if(temp_df[j,k]==""){ #check for blank values
                    # print("empty string next")
                    temp_df[j,k]<-NA #if blank value found, replace with NA
                    # print("fixed blank to NA")
                    next 
                }
                else if(is.na(filter(temp_df,ID==as.character(temp_df[j,k]))["sampled"])) { #if the replacement has not yet been generated, move on, but set flag to jump this to the end
                    skip_flag<-TRUE
                    # print("skip flag set")
                } else {
                    temp_df[j,k]<-as.integer(filter(temp_df,ID==temp_df[j,k])[6]) #replacing IDs with the sampled dates of those IDs
                    # print("successful check value grab")
                } #if-else
            } #k for loop
            if(skip_flag==FALSE){
                row_list<-row_list[row_list!=j]
            } else {
                next 
            }
            #sampling section
            if(skip_flag==FALSE){
                temp_df[j,6]<-sample(temp_df$Start[j]:temp_df$End[j],1)
                temp_df[j,7]<-i #identifying the run number

                if(any(as.numeric(temp_df[j,4:5])>as.numeric(temp_df[j,6]),na.rm=TRUE)){
                    # print(j)
                    while(any(as.numeric(temp_df[j,4:5])>as.numeric(temp_df[j,6]),na.rm=TRUE)){
                        temp_df[j,6]<-sample(temp_df$Start[j]:temp_df$End[j],1)
                    } #while 
                    temp_df[j,7]=i 
                }#if
            }
        } #j for loop
    } #while loop wrapper around j loop
    if(i==1){
        df2<-temp_df
    }else{
        df2<-rbind(df2,temp_df)
    }#else

    #blank out temp_df to prepare for another run
    temp_df<-df
    temp_df$sampled <- NA_integer_
    temp_df %>% mutate_if(is.factor, as.character) -> temp_df 

}#i for loop

Looking at the first question you had (Sample using start and end values within a loop in R), I am not quite sure why you need mapply if you are already looping row by row. Why not just something like in this example:

set.seed(1)
df <- structure(list(ID = structure(1:14, .Label = c("a", "b", "c", 
                                                                                                         "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n"), class = "factor"), 
                                         start = c(25L, 36L, 23L, 15L, 21L, 43L, 39L, 27L, 11L, 21L, 
                                                            28L, 44L, 16L, 25L), end = c(67L, 97L, 85L, 67L, 52L, 72L, 
                                                                                                                     55L, 62L, 99L, 89L, 65L, 58L, 77L, 88L)), class = "data.frame", row.names = c(NA, -14L))

df$sample <- NA

for (row in 1:nrow(df)) {
    df$sample[row] <- sample(df$start[row]:df$end[row], 1)
}

df
#>    ID start end sample
#> 1   a    25  67     28
#> 2   b    36  97     74
#> 3   c    23  85     23
#> 4   d    15  67     48
#> 5   e    21  52     49
#> 6   f    43  72     65
#> 7   g    39  55     49
#> 8   h    27  62     40
#> 9   i    11  99     92
#> 10  j    21  89     79
#> 11  k    28  65     60
#> 12  l    44  58     48
#> 13  m    16  77     36
#> 14  n    25  88     66

Created on 2020-06-02 by the reprex package (v0.3.0)

If that works, then hopefully you won't have the error associated with mapply anymore.




回答2:


I want to thank those of you that offered alternate methods to try to deal with this problem. The issue seems to have been caused by an older version of dplyr. I was using dplyr 0.8.3 when I was getting the error, but the code is now working with dplyr 1.0.0.



来源:https://stackoverflow.com/questions/62147310/mapply-error-after-updating-r-and-tidyverse

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!