问题
I'm tring to analyze below data, modeled it with logistic regression first and then did the prediction, calculated the accuracy & auc; then performed recursive feature selection and calculated accuracy & auc again, thought the accuracy and auc would be higher, but actually they are both lower after the recursive feature selection, not sure whether it's expected? Or did I miss something? Thanks!
Data: https://github.com/amandawang-dev/census-training/blob/master/census-training.csv
for logistic regression, Accuracy: 0.8111649491571692; AUC: 0.824896256487386
after recursive feature selection, Accuracy: 0.8130075752405651; AUC: 0.7997315631730443
import pandas as pd
import numpy as np
from sklearn import preprocessing, metrics
from sklearn.model_selection import train_test_split
train=pd.read_csv('census-training.csv')
train = train.replace('?', np.nan)
for column in train.columns:
train[column].fillna(train[column].mode()[0], inplace=True)
x['Income'] = x['Income'].str.contains('>50K').astype(int)
x['Gender'] = x['Gender'].str.contains('Male').astype(int)
obj = train.select_dtypes(include=['object']) #all features that are 'object' datatypes
le = preprocessing.LabelEncoder()
for i in range(len(obj.columns)):
train[obj.columns[i]] = le.fit_transform(train[obj.columns[i]])#TODO #Encode input data
train_set, test_set = train_test_split(train, test_size=0.3, random_state=42)
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, roc_curve, roc_auc_score
from sklearn.metrics import accuracy_score
log_rgr = LogisticRegression(random_state=0)
X_train=train_set.iloc[:, 0:9]
y_train=train_set.iloc[:, 9:10]
X_test=test_set.iloc[:, 0:9]
y_test=test_set.iloc[:, 9:10]
log_rgr.fit(X_train, y_train)
y_pred = log_rgr.predict(X_test)
lr_acc = accuracy_score(y_test, y_pred)
probs = log_rgr.predict_proba(X_test)
preds = probs[:,1]
print(preds)
from sklearn.preprocessing import label_binarize
y = label_binarize(y_test, classes=[0, 1]) #note to myself: class need to have only 0,1
fpr, tpr, threshold = metrics.roc_curve(y, preds)
roc_auc = roc_auc_score(y_test, preds)
print("Accuracy: {}".format(lr_acc))
print("AUC: {}".format(roc_auc))
from sklearn.feature_selection import RFE
rfe = RFE(log_rgr, 5)
fit = rfe.fit(X_train, y_train)
X_train_new = fit.transform(X_train)
X_test_new = fit.transform(X_test)
log_rgr.fit(X_train_new, y_train)
y_pred = log_rgr.predict(X_test_new)
lr_acc = accuracy_score(y_test, y_pred)
probs = rfe.predict_proba(X_test)
preds = probs[:,1]
y = label_binarize(y_test, classes=[0, 1])
fpr, tpr, threshold = metrics.roc_curve(y, preds)
roc_auc =roc_auc_score(y_test, preds)
print("Accuracy: {}".format(lr_acc))
print("AUC: {}".format(roc_auc))
回答1:
There is simply no guarantee that any kind of feature selection (backward, forward, recursive - you name it) will actually lead to better performance in general. None at all. Such tools are there for convenience only - they may work, or they may not. Best guide and ultimate judge is always the experiment.
Apart from some very specific cases in linear or logistic regression, most notably the Lasso (which, no coincidence, actually comes from statistics), or somewhat extreme cases with too many features (aka The curse of dimensionality), even when it works (or doesn't), there is not necessarily much to explain as to why (or why not).
来源:https://stackoverflow.com/questions/61441974/recursive-feature-selection-may-not-yield-higher-performance