codeforces 940F 带修改的莫队

人走茶凉 提交于 2020-05-05 19:04:52
F. Machine Learning
time limit per test
4 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

You come home and fell some unpleasant smell. Where is it coming from?

You are given an array a. You have to answer the following queries:

  1. You are given two integers l and r. Let ci be the number of occurrences of i in al: r, where al: r is the subarray of a from l-th element to r-th inclusive. Find the Mex of {c0, c1, ..., c109}
  2. You are given two integers p to x. Change ap to x.

The Mex of a multiset of numbers is the smallest non-negative integer not in the set.

Note that in this problem all elements of a are positive, which means that c0 = 0 and 0 is never the answer for the query of the second type.

Input

The first line of input contains two integers n and q (1 ≤ n, q ≤ 100 000) — the length of the array and the number of queries respectively.

The second line of input contains n integers — a1, a2, ..., an (1 ≤ ai ≤ 109).

Each of the next q lines describes a single query.

The first type of query is described by three integers ti = 1, liri, where 1 ≤ li ≤ ri ≤ n — the bounds of the subarray.

The second type of query is described by three integers ti = 2, pixi, where 1 ≤ pi ≤ n is the index of the element, which must be changed and 1 ≤ xi ≤ 109 is the new value.

Output

For each query of the first type output a single integer  — the Mex of {c0, c1, ..., c109}.

Example
input
Copy
10 4
1 2 3 1 1 2 2 2 9 9
1 1 1
1 2 8
2 7 1
1 2 8
output
2
3
2
Note

The subarray of the first query consists of the single element — 1.

The subarray of the second query consists of four 2s, one 3 and two 1s.

The subarray of the fourth query consists of three 1s, three 2s and one 3.

 

大意:给出一个序列,两种操作。

1.询问一个区间内,把每种元素的个数组成一个集合,这个集合的mex值(不在集合中的最小值)。

2.单点修改。

 

题解:

莫队算法:

题目给出数值的大小过大,但是实际出现过的最多200000个,离散化,把出现过的数从小到大排列,和1——200000,一一对应。

这样题目中的每个数值都可以用1——200000中的数等价替换。

 

然后就是带修改的莫队。

其实就是多加了一维时间,三维和二维类比一下,就是先按照左端点分块,再按照右端点分块,块中时间单调。

 

块的大小需要时n^(2/3),如果还是sqrt(n)会TLE。

因为块的大小是n^(2/3)的时候复杂度最低,通过考虑每种移动方式的复杂度可以证明,详情请移步大神博客:

https://www.luogu.org/blog/user12668/solution-p1903

 

  1 /*
  2 Welcome Hacking
  3 Wish You High Rating
  4 */
  5 #include<iostream>
  6 #include<cstdio>
  7 #include<cstring>
  8 #include<ctime>
  9 #include<cstdlib>
 10 #include<algorithm>
 11 #include<cmath>
 12 #include<string>
 13 #include<map>
 14 using namespace std;
 15 int read(){
 16     int xx=0,ff=1;char ch=getchar();
 17     while(ch>'9'||ch<'0'){if(ch=='-')ff=-1;ch=getchar();}
 18     while(ch>='0'&&ch<='9'){xx=xx*10+ch-'0';ch=getchar();}
 19     return xx*ff;
 20 }
 21 const int maxn=100010;
 22 int N,M,block,a[maxn],b[maxn],belong[maxn];
 23 struct query{
 24     int L,R,tim,id;
 25     bool friend operator<(const query&A,const query&B){
 26         if(belong[A.L]!=belong[B.L])
 27             return A.L<B.L;
 28         if(belong[A.R]!=belong[B.R])
 29             return A.R<B.R;
 30         return A.tim<B.tim;
 31     }
 32 }Q[maxn];
 33 struct change{
 34     int pos,x,y;
 35 }C[maxn];
 36 int tp1,tp2,tp;
 37 int pm[maxn*2],arg[3][maxn];
 38 map<int,int>mp;
 39 int rk[maxn*2],tot;
 40 int cnt[maxn*2],siz[maxn],ans[maxn];
 41 int x,y,z;
 42 inline void add(int i){
 43     siz[cnt[i]]--;
 44     siz[++cnt[i]]++;
 45 }
 46 inline void del(int i){
 47     siz[cnt[i]]--;
 48     siz[--cnt[i]]++;
 49 }
 50 inline void change_add(int i){
 51     if(C[i].pos>=x&&C[i].pos<=y){
 52         del(C[i].x);
 53         add(C[i].y);
 54     }
 55     a[C[i].pos]=C[i].y;
 56 }
 57 inline void change_del(int i){
 58     if(C[i].pos>=x&&C[i].pos<=y){
 59         del(C[i].y);
 60         add(C[i].x);
 61     }
 62     a[C[i].pos]=C[i].x;
 63 }
 64 int main(){
 65     //freopen("in.txt","r",stdin);
 66     N=read(),M=read();
 67     for(int i=1;i<=N;i++)
 68         pm[++tp]=b[i]=read();
 69 
 70     for(int i=1;i<=M;i++){
 71         for(int j=0;j<=2;j++)
 72             arg[j][i]=read();
 73         if(arg[0][i]==2)
 74             pm[++tp]=arg[2][i];
 75     }
 76 
 77     sort(pm+1,pm+1+tp);
 78     for(int i=1;i<=tp;i++)
 79         if(!mp[pm[i]])
 80             mp[pm[i]]=++tot,rk[tot]=pm[i];
 81 
 82     for(int i=1;i<=N;i++)
 83         a[i]=b[i]=mp[b[i]];
 84     for(int i=1;i<=M;i++)
 85         if(arg[0][i]==2)
 86             arg[2][i]=mp[arg[2][i]];
 87 
 88     for(int i=1;i<=M;i++)
 89         if(arg[0][i]==1)
 90             Q[++tp1].tim=tp2,Q[tp1].L=arg[1][i],Q[tp1].R=arg[2][i],Q[tp1].id=tp1;
 91         else
 92             C[++tp2].pos=arg[1][i],C[tp2].x=b[C[tp2].pos],C[tp2].y=arg[2][i],b[C[tp2].pos]=arg[2][i];
 93 
 94     block=(int)pow(N+0.5,2.0/3);//caution
 95 
 96     for(int i=1;i<=N;i++)
 97         belong[i]=(i-1)/block+1;
 98     sort(Q+1,Q+1+tp1);
 99     x=Q[1].L,y=Q[1].L-1,z=0;
100     for(int i=1;i<=tp1;i++){
101         for(;x<Q[i].L;x++)
102             del(a[x]);
103         for(;x>Q[i].L;x--)
104             add(a[x-1]);
105         for(;y<Q[i].R;y++)
106             add(a[y+1]);
107         for(;y>Q[i].R;y--)
108             del(a[y]);
109         for(;z<Q[i].tim;z++)
110             change_add(z+1);
111         for(;z>Q[i].tim;z--)
112             change_del(z);
113 
114         for(int j=1;;j++)
115             if(!siz[j]){
116                 ans[Q[i].id]=j;
117                 break;
118             }
119     }
120     for(int i=1;i<=tp1;i++)
121         printf("%d\n",ans[i]);
122     return 0;
123 }
View Code

 

 

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!