问题
Friends, I would like my selectInput to be linked to the number of clusters that appear in my output table. In other words, it appears divided into 5 clusters. In selectInput I would like it to show as follows:
Select the cluster
1
2
3
4
5
That is, my selectinput will depend on my sliderInput. How can I do this? My executable code is below:
library(shiny)
library(ggplot2)
library(rdist)
library(geosphere)
library(kableExtra)
library(readxl)
library(tidyverse)
library(DT)
#database
df<-structure(list(Properties = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35), Latitude = c(-23.8, -23.8, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9,
+ -23.9, -23.9, -23.9, -23.9, -23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9), Longitude = c(-49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.7,
+ -49.7, -49.7, -49.7, -49.7, -49.6, -49.6, -49.6, -49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6), Waste = c(526, 350, 526, 469, 285, 175, 175, 350, 350, 175, 350, 175, 175, 364,
+ 175, 175, 350, 45.5, 54.6,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350)), class = "data.frame", row.names = c(NA, -35L))
function.clustering<-function(df,k,Filter1,Filter2){
if (Filter1==2){
Q1<-matrix(quantile(df$Waste, probs = 0.25))
Q3<-matrix(quantile(df$Waste, probs = 0.75))
L<-Q1-1.5*(Q3-Q1)
S<-Q3+1.5*(Q3-Q1)
df_1<-subset(df,Waste>L[1])
df<-subset(df_1,Waste<S[1])
}
#cluster
coordinates<-df[c("Latitude","Longitude")]
d<-as.dist(distm(coordinates[,2:1]))
fit.average<-hclust(d,method="average")
#Number of clusters
clusters<-cutree(fit.average, k)
nclusters<-matrix(table(clusters))
df$cluster <- clusters
#Localization
center_mass<-matrix(nrow=k,ncol=2)
for(i in 1:k){
center_mass[i,]<-c(weighted.mean(subset(df,cluster==i)$Latitude,subset(df,cluster==i)$Waste),
weighted.mean(subset(df,cluster==i)$Longitude,subset(df,cluster==i)$Waste))}
coordinates$cluster<-clusters
center_mass<-cbind(center_mass,matrix(c(1:k),ncol=1))
#Coverage
coverage<-matrix(nrow=k,ncol=1)
for(i in 1:k){
aux_dist<-distm(rbind(subset(coordinates,cluster==i),center_mass[i,])[,2:1])
coverage[i,]<-max(aux_dist[nclusters[i,1]+1,])}
coverage<-cbind(coverage,matrix(c(1:k),ncol=1))
colnames(coverage)<-c("Coverage_meters","cluster")
#Sum of Waste from clusters
sum_waste<-matrix(nrow=k,ncol=1)
for(i in 1:k){
sum_waste[i,]<-sum(subset(df,cluster==i)["Waste"])
}
sum_waste<-cbind(sum_waste,matrix(c(1:k),ncol=1))
colnames(sum_waste)<-c("Potential_Waste_m3","cluster")
#Output table
data_table <- Reduce(merge, list(df, coverage, sum_waste))
data_table <- data_table[order(data_table$cluster, as.numeric(data_table$Properties)),]
data_table_1 <- aggregate(. ~ cluster + Coverage_meters + Potential_Waste_m3, data_table[,c(1,7,6,2)], toString)
#Scatter Plot
suppressPackageStartupMessages(library(ggplot2))
df1<-as.data.frame(center_mass)
colnames(df1) <-c("Latitude", "Longitude", "cluster")
g<-ggplot(data=df, aes(x=Longitude, y=Latitude, color=factor(clusters))) + geom_point(aes(x=Longitude, y=Latitude), size = 4)
Centro_View<- g + geom_text(data=df, mapping=aes(x=eval(Longitude), y=eval(Latitude), label=Waste), size=3, hjust=-0.1)+ geom_point(data=df1, mapping=aes(Longitude, Latitude), color= "green", size=4) + geom_text(data=df1, mapping = aes(x=Longitude, y=Latitude, label = 1:k), color = "black", size = 4)
plotGD<-print(Centro_View + ggtitle("Scatter Plot") + theme(plot.title = element_text(hjust = 0.5)))
return(list(
"Data" = data_table_1,
"Plot" = plotGD,
"Coverage" = coverage
))
}
ui <- bootstrapPage(
navbarPage(theme = shinytheme("flatly"), collapsible = TRUE,
"Clustering",
tabPanel("General Solution",
sidebarLayout(
sidebarPanel(
radioButtons("filtro1", h3("Select properties"),
choices = list("All properties" = 1,
"Exclude properties" = 2),
selected = 1),
radioButtons("filtro2", h3("Coverage"),
choices = list("Limite coverage" = 1,
"No limite coverage" = 2
),selected = 1),
radioButtons("gasoduto", h3("Preference for the location"),
choices = list("big production" = 1,
"small production"= 2
),selected = 1),
tags$hr(),
tags$b(h3("Satisfied?")),
radioButtons("satisfaction","", choices = list("Yes" = 1,"No " = 2),selected = 1),
tags$b(h5("(a) Choose other filters")),
tags$b(h5("(b) Choose clusters")),
sliderInput("Slider", h5(""),
min = 2, max = 8, value = 5),
tags$hr(),
actionButton("reset", "Clean")
),
mainPanel(
tabsetPanel(
tabPanel("Solution", DTOutput("tabela"))))
)),
tabPanel("Route and distance",
sidebarLayout(
sidebarPanel(
selectInput("select", label = h3("Select the cluster"),"")
),
mainPanel(
tabsetPanel(
tabPanel("Distance", plotOutput(""))))
))))
server <- function(input, output) {
f1<-renderText({input$filter1})
f2<-renderText({input$filter2})
Modelclustering<-reactive(function.clustering(df,input$Slider,1,1))
output$tabela <- renderDataTable({
data_table_1 <- req(Modelclustering())[[1]]
x <- datatable(data_table_1[order(data_table_1$cluster),c(1,4,2,3)],
options = list(columnDefs = list(list(className = 'dt-center', targets = 0:3)),
paging =TRUE,searching = FALSE,
pageLength = 10,lenghtMenu=c(5,10,15,20),scrollx=T
), rownames = FALSE)%>% formatRound(c(3:4), 2,mark = ",")%>%
formatStyle(columns = c(3:4), 'text-align' = 'center')
return(x)
})
output$ScatterPlot <- renderPlot({
Modelclustering()[[2]]
})
}
shinyApp(ui = ui, server = server)
Thank you very much friends!
NEW UPDATE
I inserted the updateSelectiInput function (code bellow), and that way I managed to put the corresponding number of clusters. However, I would like to leave it in the form of list, instead of being 5, as I described at the beginning:
observeEvent(input$Slider,{
updateSelectInput(session,'select',
choices=unique(df[df==input$Slider]))
})
回答1:
You were really close with the update expression. All you need there is:
observeEvent(input$Slider,{
updateSelectInput(session,'select',
choices=unique(1:input$Slider))
})
Another approach is to use uiOutput/renderUI
. In the ui
, instead of creating an empty selectInput, we can put a placeholder:
uiOutput("select_clusters")
Then in the server, we populate this placeholder:
output$select_clusters <- renderUI({
selectInput("select", label = h3("Select the cluster"), choices = 1:input$Slider)
})
Edit
To make an observeEvent
(or eventReactive
) react to multiple inputs, wrap the inputs or reactives in c()
:
observeEvent(c(input$SLIDER, input$FILTER),{
updateSelectInput(session,'select',
choices=unique(1:input$Slider))
})
But if you need to do that, I think it makes more sense, and gives flexibility, to go with the renderUI
approach. This might look something like:
output$select_clusters <- renderUI({
req(input$slider)
req(input$filter)
df2 <- df[df$something %in% input$filter, ]
selectInput("select",
label = h3("Select the cluster"),
choices = df2$something)
})
In general, with the update*Input
function, you can only update an existing widget, you can't remove it. But if the number of clusters = 1, then you do not need a select input at all. With renderUI
you can use an empty HTML container (div()
) to 'hide' the selectInput
if the conditions require it:
what_to_do <- reactive({
req(input$Slider)
if (input$Slider == 1) {
x <- div()
} else {
x <- selectInput("select",
label = h3("Select the cluster"),
choices = 1:input$Slider)
}
return(x)
})
output$select_clusters <- renderUI({
what_to_do()
})
来源:https://stackoverflow.com/questions/61559805/link-selectinput-with-sliderinput-in-shiny