There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
- (1) Every node is either red or black.
- (2) The root is black.
- (3) Every leaf (NULL) is black.
- (4) If a node is red, then both its children are black.
- (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.
Figure 1 | Figure 2 | Figure 3 |
For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.
Sample Input:
3
9
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes No No
红黑树也不过是如此嘛,反正都是跟着规则来。
我的output函数基本上解决了所有的判断。
1 #include <bits/stdc++.h>
2 using namespace std;
3 int n, m, x;
4 struct Node
5 {
6 int val;
7 Node *left, *right;
8 };
9 set<int> st;
10 Node *insert(Node *root, int val){
11 if(root == NULL){
12 root = new Node();
13 root->val = val;
14 root->left = root->right = NULL;
15 }else{
16 if(abs(root->val) > abs(val)){
17 root->left = insert(root->left, val);
18 }else{
19 root->right = insert(root->right, val);
20 }
21 }
22 return root;
23 }
24 bool output(Node *root, int x){
25 if(root != NULL){
26 int y = root->val<0?0:1;
27 if(root->left != NULL && root->val<0&&root->left->val<0)
28 return false;
29 if(root->right != NULL && root->val<0&&root->right->val<0)
30 return false;
31 if(!output(root->left, x+y)) return false;
32 if(!output(root->right, x+y)) return false;
33 }else{
34 st.insert(x);
35 }
36 return true;
37 }
38 int main(){
39 cin >> n;
40 while(n--){
41 Node *tree = NULL;
42 st.clear();
43 cin >> m;
44 for(int i = 0; i < m; i++){
45 cin >> x;
46 tree = insert(tree, x);
47 }
48 if(tree->val < 0){
49 cout << "No" << endl;
50 }else{
51 bool flag = output(tree, 0);
52 if(flag && st.size() == 1){
53 cout <<"Yes"<<endl;
54 }else{
55 cout << "No"<<endl;
56 }
57 }
58 }
59 return 0;
60 }
来源:oschina
链接:https://my.oschina.net/u/4339899/blog/3434582