前两篇中,我们看到了dubbo在负载均衡和服务路由方面的实现,它为集群功能提供了必要的功能。
今天我们再来看另一个集群组件的实现:集群容错。
1. dubbo 集群容错简介
为了避免单点故障,现在的应用通常至少会部署在两台服务器上。对于一些负载比较高的服务,会部署更多的服务器。对于服务消费者来说,同一环境下出现了多个服务提供者。这时会出现一个问题,服务消费者需要决定选择哪个服务提供者进行调用。另外服务调用失败时的处理措施也是需要考虑的,是重试呢,还是抛出异常,亦或是只打印异常等。为了处理这些问题,Dubbo 定义了集群接口 Cluster 以及 Cluster Invoker。集群 Cluster 用途是将多个服务提供者合并为一个 Cluster Invoker,并将这个 Invoker 暴露给服务消费者。这样一来,服务消费者只需通过这个 Invoker 进行远程调用即可,至于具体调用哪个服务提供者,以及调用失败后如何处理等问题,现在都交给集群模块去处理。集群模块是服务提供者和服务消费者的中间层,为服务消费者屏蔽了服务提供者的情况,这样服务消费者就可以专心处理远程调用相关事宜。
dubbo的集群容错功能由多个组件共同完成:包括 Cluster、Cluster Invoker、Directory、Router 和 LoadBalance 等。它们之间的依赖关系如下:
负载均衡、路由服务是在一次调用中进行的,而容错则是当调用发生异常之后,进行处理策略。
dubbo中主要提供了以下几种容错策略实现:
Failover Cluster - 失败自动切换
Failfast Cluster - 快速失败
Failsafe Cluster - 失败安全
Failback Cluster - 失败自动恢复
Forking Cluster - 并行调用多个服务提供者
2. 集群容错的框架实现
集群接口 Cluster 和 Cluster Invoker,这两者是不同的。Cluster 是接口,而 Cluster Invoker 是一种 Invoker。服务提供者的选择逻辑,以及远程调用失败后的的处理逻辑均是封装在 Cluster Invoker 中。
Cluster 的实现类图如下:
各个Cluster的实现都很简单,也都统一继承了 AbstractCluster, 而该 AbstractCluster 则做了一层统一的拦截器的功能接入,实现如下:
public abstract class AbstractCluster implements Cluster {
private <T> Invoker<T> buildClusterInterceptors(AbstractClusterInvoker<T> clusterInvoker, String key) {
AbstractClusterInvoker<T> last = clusterInvoker;
List<ClusterInterceptor> interceptors = ExtensionLoader.getExtensionLoader(ClusterInterceptor.class).getActivateExtension(clusterInvoker.getUrl(), key);
// 根据需要包装ClusterInvoker, 使用切面的方式进行拦截器接入
// 按先后依次强入拦截器
if (!interceptors.isEmpty()) {
for (int i = interceptors.size() - 1; i >= 0; i--) {
final ClusterInterceptor interceptor = interceptors.get(i);
final AbstractClusterInvoker<T> next = last;
// 使用内部类进行包装拦截器
// 先后顺序如: beforeC -> beforeB -> beforeA (spring中还有Around) -> afterA -> afterB -> afterC (spring中还有afterReturn)
last = new InterceptorInvokerNode<>(clusterInvoker, interceptor, next);
}
}
return last;
}
@Override
public <T> Invoker<T> join(Directory<T> directory) throws RpcException {
// ClusterInvoker 调用入口, 让具体策略实现 doJoin(), 并在其基础上进行包装拦截器, 依据来源 reference.interceptor=xxx
return buildClusterInterceptors(doJoin(directory), directory.getUrl().getParameter(REFERENCE_INTERCEPTOR_KEY));
}
//
protected abstract <T> AbstractClusterInvoker<T> doJoin(Directory<T> directory) throws RpcException;
protected class InterceptorInvokerNode<T> extends AbstractClusterInvoker<T> {
private AbstractClusterInvoker<T> clusterInvoker;
private ClusterInterceptor interceptor;
private AbstractClusterInvoker<T> next;
public InterceptorInvokerNode(AbstractClusterInvoker<T> clusterInvoker,
ClusterInterceptor interceptor,
AbstractClusterInvoker<T> next) {
this.clusterInvoker = clusterInvoker;
this.interceptor = interceptor;
this.next = next;
}
@Override
public Class<T> getInterface() {
return clusterInvoker.getInterface();
}
@Override
public URL getUrl() {
return clusterInvoker.getUrl();
}
@Override
public boolean isAvailable() {
return clusterInvoker.isAvailable();
}
@Override
public Result invoke(Invocation invocation) throws RpcException {
Result asyncResult;
try {
// 拦截器的具体处理逻辑
// 有个 intercept() 的默认方法,其为调用 clusterInvoker.invoke(invocation); 从而实现链式调用
interceptor.before(next, invocation);
asyncResult = interceptor.intercept(next, invocation);
} catch (Exception e) {
// onError callback
if (interceptor instanceof ClusterInterceptor.Listener) {
ClusterInterceptor.Listener listener = (ClusterInterceptor.Listener) interceptor;
listener.onError(e, clusterInvoker, invocation);
}
throw e;
} finally {
interceptor.after(next, invocation);
}
return asyncResult.whenCompleteWithContext((r, t) -> {
// onResponse callback
if (interceptor instanceof ClusterInterceptor.Listener) {
ClusterInterceptor.Listener listener = (ClusterInterceptor.Listener) interceptor;
if (t == null) {
listener.onMessage(r, clusterInvoker, invocation);
} else {
listener.onError(t, clusterInvoker, invocation);
}
}
});
}
@Override
public void destroy() {
clusterInvoker.destroy();
}
@Override
public String toString() {
return clusterInvoker.toString();
}
@Override
protected Result doInvoke(Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
// The only purpose is to build a interceptor chain, so the cluster related logic doesn't matter.
return null;
}
}
}
接下来,我们详细看看,每个集群容错策略都是如何创建的。
// failover 失败自动切换
public class FailoverCluster extends AbstractCluster {
public final static String NAME = "failover";
@Override
public <T> AbstractClusterInvoker<T> doJoin(Directory<T> directory) throws RpcException {
return new FailoverClusterInvoker<>(directory);
}
}
// failfast 快速失败
public class FailfastCluster extends AbstractCluster {
public final static String NAME = "failfast";
@Override
public <T> AbstractClusterInvoker<T> doJoin(Directory<T> directory) throws RpcException {
return new FailfastClusterInvoker<>(directory);
}
}
// failsafe 失败安全
public class FailsafeCluster extends AbstractCluster {
public final static String NAME = "failsafe";
@Override
public <T> AbstractClusterInvoker<T> doJoin(Directory<T> directory) throws RpcException {
return new FailsafeClusterInvoker<>(directory);
}
}
// failback 失败自动恢复
public class FailbackCluster extends AbstractCluster {
public final static String NAME = "failback";
@Override
public <T> AbstractClusterInvoker<T> doJoin(Directory<T> directory) throws RpcException {
return new FailbackClusterInvoker<>(directory);
}
}
// forking 并行调用多个服务提供者
public class ForkingCluster extends AbstractCluster {
public final static String NAME = "forking";
@Override
public <T> AbstractClusterInvoker<T> doJoin(Directory<T> directory) throws RpcException {
return new ForkingClusterInvoker<>(directory);
}
}
// mergeable 合并结果容错
public class MergeableCluster extends AbstractCluster {
public static final String NAME = "mergeable";
@Override
public <T> AbstractClusterInvoker<T> doJoin(Directory<T> directory) throws RpcException {
return new MergeableClusterInvoker<T>(directory);
}
}
3. 具体集群容错的实现
failover, 失败自动切换。这是dubbo的默认集群容错策略,因为它是一个比较通用的策略,即只需做重试即可,保证高可用。
整个集群容错策略的调用入口在 AbstractClusterInvoker.invoke() 中,经过一些通用过程调用后,再由具体策略实现 doInvoke();
// org.apache.dubbo.rpc.cluster.support.AbstractClusterInvoker#invoke
@Override
public Result invoke(final Invocation invocation) throws RpcException {
// 有效性检查
checkWhetherDestroyed();
// binding attachments into invocation.
Map<String, Object> contextAttachments = RpcContext.getContext().getObjectAttachments();
if (contextAttachments != null && contextAttachments.size() != 0) {
((RpcInvocation) invocation).addObjectAttachments(contextAttachments);
}
// 路由服务提供所有的 invokers
List<Invoker<T>> invokers = list(invocation);
// 获取负载均衡器
LoadBalance loadbalance = initLoadBalance(invokers, invocation);
RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation);
// 各子类实现 具体的容错逻辑
return doInvoke(invocation, invokers, loadbalance);
}
3.1. failover 失败自动切换实现
// org.apache.dubbo.rpc.cluster.support.FailoverClusterInvoker#doInvoke
@Override
@SuppressWarnings({"unchecked", "rawtypes"})
public Result doInvoke(Invocation invocation, final List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
List<Invoker<T>> copyInvokers = invokers;
checkInvokers(copyInvokers, invocation);
String methodName = RpcUtils.getMethodName(invocation);
int len = getUrl().getMethodParameter(methodName, RETRIES_KEY, DEFAULT_RETRIES) + 1;
if (len <= 0) {
len = 1;
}
// retry loop.
RpcException le = null; // last exception.
List<Invoker<T>> invoked = new ArrayList<Invoker<T>>(copyInvokers.size()); // invoked invokers.
Set<String> providers = new HashSet<String>(len);
// 失败自动切换,就是一个重试的过程
for (int i = 0; i < len; i++) {
//Reselect before retry to avoid a change of candidate `invokers`.
//NOTE: if `invokers` changed, then `invoked` also lose accuracy.
if (i > 0) {
// 进行重试时,需要刷新invokers
checkWhetherDestroyed();
copyInvokers = list(invocation);
// check again
checkInvokers(copyInvokers, invocation);
}
// 使用负载均衡选取一个 invoker
Invoker<T> invoker = select(loadbalance, invocation, copyInvokers, invoked);
// 将选中的invoker添加到 invoked 中,避免反复选择一个失效的invoker
invoked.add(invoker);
RpcContext.getContext().setInvokers((List) invoked);
try {
// 调用选中的invoker 远程服务,成功直接返回了,失败则容错能力上
Result result = invoker.invoke(invocation);
if (le != null && logger.isWarnEnabled()) {
logger.warn("Although retry the method " + methodName
+ " in the service " + getInterface().getName()
+ " was successful by the provider " + invoker.getUrl().getAddress()
+ ", but there have been failed providers " + providers
+ " (" + providers.size() + "/" + copyInvokers.size()
+ ") from the registry " + directory.getUrl().getAddress()
+ " on the consumer " + NetUtils.getLocalHost()
+ " using the dubbo version " + Version.getVersion() + ". Last error is: "
+ le.getMessage(), le);
}
// 调用成功直接返回
return result;
} catch (RpcException e) {
// 业务异常则直接抛出,不再重试
if (e.isBiz()) { // biz exception.
throw e;
}
le = e;
} catch (Throwable e) {
le = new RpcException(e.getMessage(), e);
} finally {
providers.add(invoker.getUrl().getAddress());
}
}
throw new RpcException(le.getCode(), "Failed to invoke the method "
+ methodName + " in the service " + getInterface().getName()
+ ". Tried " + len + " times of the providers " + providers
+ " (" + providers.size() + "/" + copyInvokers.size()
+ ") from the registry " + directory.getUrl().getAddress()
+ " on the consumer " + NetUtils.getLocalHost() + " using the dubbo version "
+ Version.getVersion() + ". Last error is: "
+ le.getMessage(), le.getCause() != null ? le.getCause() : le);
}
总结:failover 容错,即是自动重试各可用提供者的过程。
3.2. failback 失败自动恢复的实现
public FailbackClusterInvoker(Directory<T> directory) {
super(directory);
// retries=3
int retriesConfig = getUrl().getParameter(RETRIES_KEY, DEFAULT_FAILBACK_TIMES);
if (retriesConfig <= 0) {
retriesConfig = DEFAULT_FAILBACK_TIMES;
}
// failbacktasks=100
int failbackTasksConfig = getUrl().getParameter(FAIL_BACK_TASKS_KEY, DEFAULT_FAILBACK_TASKS);
if (failbackTasksConfig <= 0) {
failbackTasksConfig = DEFAULT_FAILBACK_TASKS;
}
retries = retriesConfig;
failbackTasks = failbackTasksConfig;
}
// 当调用失败后,将其添加到定时队列中,稍后进行重新请求
private void addFailed(LoadBalance loadbalance, Invocation invocation, List<Invoker<T>> invokers, Invoker<T> lastInvoker) {
if (failTimer == null) {
synchronized (this) {
if (failTimer == null) {
// 以1秒为间隔使用 hash环,扫描任务
failTimer = new HashedWheelTimer(
new NamedThreadFactory("failback-cluster-timer", true),
1,
TimeUnit.SECONDS, 32, failbackTasks);
}
}
}
// 使用 RetryTimerTask 来构建调度的任务
RetryTimerTask retryTimerTask = new RetryTimerTask(loadbalance, invocation, invokers, lastInvoker, retries, RETRY_FAILED_PERIOD);
try {
failTimer.newTimeout(retryTimerTask, RETRY_FAILED_PERIOD, TimeUnit.SECONDS);
} catch (Throwable e) {
logger.error("Failback background works error,invocation->" + invocation + ", exception: " + e.getMessage());
}
}
@Override
protected Result doInvoke(Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
Invoker<T> invoker = null;
try {
checkInvokers(invokers, invocation);
invoker = select(loadbalance, invocation, invokers, null);
// 只调用一次,失败即失败
return invoker.invoke(invocation);
} catch (Throwable e) {
logger.error("Failback to invoke method " + invocation.getMethodName() + ", wait for retry in background. Ignored exception: "
+ e.getMessage() + ", ", e);
// 添加到失败队列中,稍后进行调度
addFailed(loadbalance, invocation, invokers, invoker);
return AsyncRpcResult.newDefaultAsyncResult(null, null, invocation); // ignore
}
}
总结:failback 容错,即是只做一次调用,失败后会开启后续定时任务进行重新调用的过程。
3.3. failfast 快速失败的实现
// org.apache.dubbo.rpc.cluster.support.FailfastClusterInvoker#doInvoke
@Override
public Result doInvoke(Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
checkInvokers(invokers, invocation);
// 使用负载均衡选取一个 可用的 invoker, 然后进行调用即可
// selected = null, 即只一次选择即可完成select
Invoker<T> invoker = select(loadbalance, invocation, invokers, null);
try {
return invoker.invoke(invocation);
} catch (Throwable e) {
if (e instanceof RpcException && ((RpcException) e).isBiz()) { // biz exception.
throw (RpcException) e;
}
throw new RpcException(e instanceof RpcException ? ((RpcException) e).getCode() : 0,
"Failfast invoke providers " + invoker.getUrl() + " " + loadbalance.getClass().getSimpleName()
+ " select from all providers " + invokers + " for service " + getInterface().getName()
+ " method " + invocation.getMethodName() + " on consumer " + NetUtils.getLocalHost()
+ " use dubbo version " + Version.getVersion()
+ ", but no luck to perform the invocation. Last error is: " + e.getMessage(),
e.getCause() != null ? e.getCause() : e);
}
}
// org.apache.dubbo.rpc.cluster.support.AbstractClusterInvoker#select
/**
* Select a invoker using loadbalance policy.</br>
* a) Firstly, select an invoker using loadbalance. If this invoker is in previously selected list, or,
* if this invoker is unavailable, then continue step b (reselect), otherwise return the first selected invoker</br>
* <p>
* b) Reselection, the validation rule for reselection: selected > available. This rule guarantees that
* the selected invoker has the minimum chance to be one in the previously selected list, and also
* guarantees this invoker is available.
*
* @param loadbalance load balance policy
* @param invocation invocation
* @param invokers invoker candidates
* @param selected exclude selected invokers or not
* @return the invoker which will final to do invoke.
* @throws RpcException exception
*/
protected Invoker<T> select(LoadBalance loadbalance, Invocation invocation,
List<Invoker<T>> invokers, List<Invoker<T>> selected) throws RpcException {
if (CollectionUtils.isEmpty(invokers)) {
return null;
}
String methodName = invocation == null ? StringUtils.EMPTY_STRING : invocation.getMethodName();
boolean sticky = invokers.get(0).getUrl()
.getMethodParameter(methodName, CLUSTER_STICKY_KEY, DEFAULT_CLUSTER_STICKY);
//ignore overloaded method
if (stickyInvoker != null && !invokers.contains(stickyInvoker)) {
stickyInvoker = null;
}
//ignore concurrency problem
if (sticky && stickyInvoker != null && (selected == null || !selected.contains(stickyInvoker))) {
if (availablecheck && stickyInvoker.isAvailable()) {
return stickyInvoker;
}
}
Invoker<T> invoker = doSelect(loadbalance, invocation, invokers, selected);
if (sticky) {
stickyInvoker = invoker;
}
return invoker;
}
private Invoker<T> doSelect(LoadBalance loadbalance, Invocation invocation,
List<Invoker<T>> invokers, List<Invoker<T>> selected) throws RpcException {
if (CollectionUtils.isEmpty(invokers)) {
return null;
}
if (invokers.size() == 1) {
return invokers.get(0);
}
Invoker<T> invoker = loadbalance.select(invokers, getUrl(), invocation);
//If the `invoker` is in the `selected` or invoker is unavailable && availablecheck is true, reselect.
if ((selected != null && selected.contains(invoker))
|| (!invoker.isAvailable() && getUrl() != null && availablecheck)) {
try {
Invoker<T> rInvoker = reselect(loadbalance, invocation, invokers, selected, availablecheck);
if (rInvoker != null) {
invoker = rInvoker;
} else {
//Check the index of current selected invoker, if it's not the last one, choose the one at index+1.
int index = invokers.indexOf(invoker);
try {
//Avoid collision
invoker = invokers.get((index + 1) % invokers.size());
} catch (Exception e) {
logger.warn(e.getMessage() + " may because invokers list dynamic change, ignore.", e);
}
}
} catch (Throwable t) {
logger.error("cluster reselect fail reason is :" + t.getMessage() + " if can not solve, you can set cluster.availablecheck=false in url", t);
}
}
return invoker;
}
总结: failfast 容错,使用负载均衡策略选择一次可用的invoker, 进行调用, 异常则抛出,正常则返回结果。
3.4. failsafe 安全失败容错的实现
@Override
public Result doInvoke(Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
try {
checkInvokers(invokers, invocation);
// 与failfast 一样,只使用一次负载均衡策略,选择一个invoker调用即可
// 差别在于返回值,failsafe 不抛出异常,当发生异常时返回一个默认值
Invoker<T> invoker = select(loadbalance, invocation, invokers, null);
return invoker.invoke(invocation);
} catch (Throwable e) {
logger.error("Failsafe ignore exception: " + e.getMessage(), e);
// 将异常信息忽略,返回默认值
return AsyncRpcResult.newDefaultAsyncResult(null, null, invocation); // ignore
}
}
总结: failsafe 容错,即忽略掉所有异常,只返回正式结果。当发生异常时,返回 AsyncRpcResult.newDefaultAsyncResult 作为结果,好像没有发生异常一样。
3.5. forking 并发请求容错实现
// org.apache.dubbo.rpc.cluster.support.ForkingClusterInvoker#doInvoke
@Override
@SuppressWarnings({"unchecked", "rawtypes"})
public Result doInvoke(final Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
try {
checkInvokers(invokers, invocation);
final List<Invoker<T>> selected;
// forks=2
final int forks = getUrl().getParameter(FORKS_KEY, DEFAULT_FORKS);
// timeout=1000
final int timeout = getUrl().getParameter(TIMEOUT_KEY, DEFAULT_TIMEOUT);
if (forks <= 0 || forks >= invokers.size()) {
selected = invokers;
} else {
selected = new ArrayList<>(forks);
while (selected.size() < forks) {
Invoker<T> invoker = select(loadbalance, invocation, invokers, selected);
if (!selected.contains(invoker)) {
//Avoid add the same invoker several times.
selected.add(invoker);
}
}
}
RpcContext.getContext().setInvokers((List) selected);
final AtomicInteger count = new AtomicInteger();
final BlockingQueue<Object> ref = new LinkedBlockingQueue<>();
for (final Invoker<T> invoker : selected) {
// 使用线程池进行并发调用 invoker
// 线程池为无界队列式: executor = Executors.newCachedThreadPool(new NamedInternalThreadFactory("forking-cluster-timer", true));
executor.execute(() -> {
try {
Result result = invoker.invoke(invocation);
// 只要结果响应,则入队到 ref 中
ref.offer(result);
} catch (Throwable e) {
int value = count.incrementAndGet();
if (value >= selected.size()) {
// 当超过forks 数量的异常发生后,将异常信息写入ref中,即外部可以获取结果了
ref.offer(e);
}
}
});
}
try {
// 阻塞获取结果,最长等待 timeout
// 获取第一个结果作为响应依据
Object ret = ref.poll(timeout, TimeUnit.MILLISECONDS);
// 因可以全部异常,获取到的结果可能是个 Throwable 信息,须先判定
if (ret instanceof Throwable) {
Throwable e = (Throwable) ret;
throw new RpcException(e instanceof RpcException ? ((RpcException) e).getCode() : 0, "Failed to forking invoke provider " + selected + ", but no luck to perform the invocation. Last error is: " + e.getMessage(), e.getCause() != null ? e.getCause() : e);
}
return (Result) ret;
} catch (InterruptedException e) {
throw new RpcException("Failed to forking invoke provider " + selected + ", but no luck to perform the invocation. Last error is: " + e.getMessage(), e);
}
} finally {
// clear attachments which is binding to current thread.
RpcContext.getContext().clearAttachments();
}
}
总结: forking 容错,即是同时发起n个并发请求调用提供者,谁最先响应则返回谁的结果。其他结果则全部忽略。可以说是非常耗资源的一种方式了,不过总是有相应的应用场景,所以存在。
3.6. broadcast 广播容错的实现
// org.apache.dubbo.rpc.cluster.support.BroadcastClusterInvoker#doInvoke
@Override
@SuppressWarnings({"unchecked", "rawtypes"})
public Result doInvoke(final Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
checkInvokers(invokers, invocation);
RpcContext.getContext().setInvokers((List) invokers);
RpcException exception = null;
Result result = null;
// 向所有invoker发起调用,只要有一个异常,则抛出异常
for (Invoker<T> invoker : invokers) {
try {
result = invoker.invoke(invocation);
} catch (RpcException e) {
exception = e;
logger.warn(e.getMessage(), e);
} catch (Throwable e) {
exception = new RpcException(e.getMessage(), e);
logger.warn(e.getMessage(), e);
}
}
if (exception != null) {
throw exception;
}
return result;
}
总结: broadcast 容错,即向所有invoker发起调用(即广播),全部成功才算成功。
3.7. mergeable 归并容错的实现
// org.apache.dubbo.rpc.cluster.support.MergeableClusterInvoker#doInvoke
@Override
protected Result doInvoke(Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
checkInvokers(invokers, invocation);
// merger=xxx
String merger = getUrl().getMethodParameter(invocation.getMethodName(), MERGER_KEY);
// 没有指定merger, 直接调用一个可用 invoker 即可
if (ConfigUtils.isEmpty(merger)) { // If a method doesn't have a merger, only invoke one Group
for (final Invoker<T> invoker : invokers) {
if (invoker.isAvailable()) {
try {
return invoker.invoke(invocation);
} catch (RpcException e) {
if (e.isNoInvokerAvailableAfterFilter()) {
log.debug("No available provider for service" + getUrl().getServiceKey() + " on group " + invoker.getUrl().getParameter(GROUP_KEY) + ", will continue to try another group.");
} else {
throw e;
}
}
}
}
// 最后尝试使用第一个 invoker.invoke()
return invokers.iterator().next().invoke(invocation);
}
Class<?> returnType;
try {
returnType = getInterface().getMethod(
invocation.getMethodName(), invocation.getParameterTypes()).getReturnType();
} catch (NoSuchMethodException e) {
returnType = null;
}
Map<String, Result> results = new HashMap<>();
for (final Invoker<T> invoker : invokers) {
RpcInvocation subInvocation = new RpcInvocation(invocation, invoker);
subInvocation.setAttachment(ASYNC_KEY, "true");
// 异步调用所有 invoker
results.put(invoker.getUrl().getServiceKey(), invoker.invoke(subInvocation));
}
Object result = null;
List<Result> resultList = new ArrayList<Result>(results.size());
for (Map.Entry<String, Result> entry : results.entrySet()) {
Result asyncResult = entry.getValue();
try {
// 等待所有 invoker 的结果响应
Result r = asyncResult.get();
if (r.hasException()) {
log.error("Invoke " + getGroupDescFromServiceKey(entry.getKey()) +
" failed: " + r.getException().getMessage(),
r.getException());
} else {
// 将所有结果放到 resultList 中
resultList.add(r);
}
} catch (Exception e) {
throw new RpcException("Failed to invoke service " + entry.getKey() + ": " + e.getMessage(), e);
}
}
if (resultList.isEmpty()) {
return AsyncRpcResult.newDefaultAsyncResult(invocation);
} else if (resultList.size() == 1) {
// 只有一个结果,则返回一个 Result
return resultList.iterator().next();
}
if (returnType == void.class) {
return AsyncRpcResult.newDefaultAsyncResult(invocation);
}
if (merger.startsWith(".")) {
merger = merger.substring(1);
Method method;
try {
method = returnType.getMethod(merger, returnType);
} catch (NoSuchMethodException e) {
throw new RpcException("Can not merge result because missing method [ " + merger + " ] in class [ " +
returnType.getName() + " ]");
}
if (!Modifier.isPublic(method.getModifiers())) {
method.setAccessible(true);
}
result = resultList.remove(0).getValue();
try {
if (method.getReturnType() != void.class
&& method.getReturnType().isAssignableFrom(result.getClass())) {
for (Result r : resultList) {
result = method.invoke(result, r.getValue());
}
} else {
for (Result r : resultList) {
method.invoke(result, r.getValue());
}
}
} catch (Exception e) {
throw new RpcException("Can not merge result: " + e.getMessage(), e);
}
} else {
Merger resultMerger;
// 解析出 merger, 调用 其 merge 方法,返回结果
if (ConfigUtils.isDefault(merger)) {
resultMerger = MergerFactory.getMerger(returnType);
} else {
resultMerger = ExtensionLoader.getExtensionLoader(Merger.class).getExtension(merger);
}
if (resultMerger != null) {
List<Object> rets = new ArrayList<Object>(resultList.size());
for (Result r : resultList) {
rets.add(r.getValue());
}
// 有很多merger, 都在 org.apache.dubbo.rpc.cluster.merger中,
// 如: MapMerger/Array/Boolean/Int/List/Set/ByteArray...
result = resultMerger.merge(
rets.toArray((Object[]) Array.newInstance(returnType, 0)));
} else {
throw new RpcException("There is no merger to merge result.");
}
}
return AsyncRpcResult.newDefaultAsyncResult(result, invocation);
}
总结: mergeable 容错,依次调用所有invokers, 并通过使用一个merger进行结果合并处理以返回结果。虽然不知道有啥用,但是感觉很厉害的样子。
dubbo的集群容错实现中,使用了 模板方式模式,责任链模式,工厂模式,使得各个容错的实现显得相当简洁明了和简单容易。这就是优秀框架的特性吧。
来源:oschina
链接:https://my.oschina.net/u/4408067/blog/4262825