Python爬取全球疫情数据,实现可视化显示地图数据(附代码)

ぐ巨炮叔叔 提交于 2020-04-29 09:01:28

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

武汉地区,目前已经实现住院患者清零了,国内疫情已经稳定,然而中国以外新冠确诊病例达到2720458例。为了体现大国风范,今天带领大家用python实现绘制疫情地图

知识点

1. 爬虫基本流程

2. json

3. requests

4. pyecharts

开发环境

Python 3.6

Pycharm

思路

 

1.目标网址

 

 

2.模拟浏览器实现访问url

 

 

3.从网页源代码中提取数据

 

 

4.数据可视化

 

 

代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-


import json
import requests
import jsonpath


from pyecharts.charts import Map,Geo
from pyecharts import options as opts
from pyecharts.globals import GeoType,RenderType

# 1.目标网址
url = 'https://api.inews.qq.com/newsqa/v1/automation/foreign/country/ranklist'
# 2.模拟浏览器实现访问url
resp = requests.post(url).text
# print(resp)
data = json.loads(resp)
# print(data)
# print(data)
# 3.从网页源代码中提取数据
name = jsonpath.jsonpath(data, "$..name")
print(len(name))
confirm = jsonpath.jsonpath(data, "$..confirm")
print(len(confirm))
# suspect = jsonpath.jsonpath(data, "$..suspect")
# print(len(suspect))
# dead = jsonpath.jsonpath(data, "$..dead")
# print(len(dead))
# heal = jsonpath.jsonpath(data, "$..heal")
# print(len(heal))
# print(china)
# data_lists = []
# for i in range(179):
#     data_list = []
#     data_list.append(name[i])
#     data_list.append(confirm[i])
#     data_lists.append(data_list)
# print(data_lists)

a = zip(name, confirm)


nameMap = {
    'Singapore Rep.': '新加坡',
    'Dominican Rep.': '多米尼加',
    'Palestine': '巴勒斯坦',
    'Bahamas': '巴哈马',
    'Timor-Leste': '东帝汶',
    'Afghanistan': '阿富汗',
    'Guinea-Bissau': '几内亚比绍',
    "Côte d'Ivoire": '科特迪瓦',
    'Siachen Glacier': '锡亚琴冰川',
    "Br. Indian Ocean Ter.": '英属印度洋领土',
    'Angola': '安哥拉',
    'Albania': '阿尔巴尼亚',
    'United Arab Emirates': '阿联酋',
    'Argentina': '阿根廷',
    'Armenia': '亚美尼亚',
    'French Southern and Antarctic Lands': '法属南半球和南极领地',
    'Australia': '澳大利亚',
    'Austria': '奥地利',
    'Azerbaijan': '阿塞拜疆',
    'Burundi': '布隆迪',
    'Belgium': '比利时',
    'Benin': '贝宁',
    'Burkina Faso': '布基纳法索',
    'Bangladesh': '孟加拉国',
    'Bulgaria': '保加利亚',
    'The Bahamas': '巴哈马',
    'Bosnia and Herz.': '波斯尼亚和黑塞哥维那',
    'Belarus': '白俄罗斯',
    'Belize': '伯利兹',
    'Bermuda': '百慕大',
    'Bolivia': '玻利维亚',
    'Brazil': '巴西',
    'Brunei': '文莱',
    'Bhutan': '不丹',
    'Botswana': '博茨瓦纳',
    'Central African Rep.': '中非共和国',
    'Canada': '加拿大',
    'Switzerland': '瑞士',
    'Chile': '智利',
    'China': '中国',
    'Ivory Coast': '象牙海岸',
    'Cameroon': '喀麦隆',
    'Dem. Rep. Congo': '刚果(金)',
    'Congo': '刚果(布)',
    'Colombia': '哥伦比亚',
    'Costa Rica': '哥斯达黎加',
    'Cuba': '古巴',
    'N. Cyprus': '北塞浦路斯',
    'Cyprus': '塞浦路斯',
    'Czech Rep.': '捷克',
    'Germany': '德国',
    'Djibouti': '吉布提',
    'Denmark': '丹麦',
    'Algeria': '阿尔及利亚',
    'Ecuador': '厄瓜多尔',
    'Egypt': '埃及',
    'Eritrea': '厄立特里亚',
    'Spain': '西班牙',
    'Estonia': '爱沙尼亚',
    'Ethiopia': '埃塞俄比亚',
    'Finland': '芬兰',
    'Fiji': '',
    'Falkland Islands': '福克兰群岛',
    'France': '法国',
    'Gabon': '加蓬',
    'United Kingdom': '英国',
    'Georgia': '格鲁吉亚',
    'Ghana': '加纳',
    'Guinea': '几内亚',
    'Gambia': '冈比亚',
    'Guinea Bissau': '几内亚比绍',
    'Eq. Guinea': '赤道几内亚',
    'Greece': '希腊',
    'Greenland': '格陵兰',
    'Guatemala': '危地马拉',
    'French Guiana': '法属圭亚那',
    'Guyana': '圭亚那',
    'Honduras': '洪都拉斯',
    'Croatia': '克罗地亚',
    'Haiti': '海地',
    'Hungary': '匈牙利',
    'Indonesia': '印度尼西亚',
    'India': '印度',
    'Ireland': '爱尔兰',
    'Iran': '伊朗',
    'Iraq': '伊拉克',
    'Iceland': '冰岛',
    'Israel': '以色列',
    'Italy': '意大利',
    'Jamaica': '牙买加',
    'Jordan': '约旦',
    'Japan': '日本',
    'Japan': '日本本土',
    'Kazakhstan': '哈萨克斯坦',
    'Kenya': '肯尼亚',
    'Kyrgyzstan': '吉尔吉斯斯坦',
    'Cambodia': '柬埔寨',
    'Korea': '韩国',
    'Kosovo': '科索沃',
    'Kuwait': '科威特',
    'Lao PDR': '老挝',
    'Lebanon': '黎巴嫩',
    'Liberia': '利比里亚',
    'Libya': '利比亚',
    'Sri Lanka': '斯里兰卡',
    'Lesotho': '莱索托',
    'Lithuania': '立陶宛',
    'Luxembourg': '卢森堡',
    'Latvia': '拉脱维亚',
    'Morocco': '摩洛哥',
    'Moldova': '摩尔多瓦',
    'Madagascar': '马达加斯加',
    'Mexico': '墨西哥',
    'Macedonia': '马其顿',
    'Mali': '马里',
    'Myanmar': '缅甸',
    'Montenegro': '黑山',
    'Mongolia': '蒙古',
    'Mozambique': '莫桑比克',
    'Mauritania': '毛里塔尼亚',
    'Malawi': '马拉维',
    'Malaysia': '马来西亚',
    'Namibia': '纳米比亚',
    'New Caledonia': '新喀里多尼亚',
    'Niger': '尼日尔',
    'Nigeria': '尼日利亚',
    'Nicaragua': '尼加拉瓜',
    'Netherlands': '荷兰',
    'Norway': '挪威',
    'Nepal': '尼泊尔',
    'New Zealand': '新西兰',
    'Oman': '阿曼',
    'Pakistan': '巴基斯坦',
    'Panama': '巴拿马',
    'Peru': '秘鲁',
    'Philippines': '菲律宾',
    'Papua New Guinea': '巴布亚新几内亚',
    'Poland': '波兰',
    'Puerto Rico': '波多黎各',
    'Dem. Rep. Korea': '朝鲜',
    'Portugal': '葡萄牙',
    'Paraguay': '巴拉圭',
    'Qatar': '卡塔尔',
    'Romania': '罗马尼亚',
    'Russia': '俄罗斯',
    'Rwanda': '卢旺达',
    'W. Sahara': '西撒哈拉',
    'Saudi Arabia': '沙特阿拉伯',
    'Sudan': '苏丹',
    'S. Sudan': '南苏丹',
    'Senegal': '塞内加尔',
    'Solomon Is.': '所罗门群岛',
    'Sierra Leone': '塞拉利昂',
    'El Salvador': '萨尔瓦多',
    'Somaliland': '索马里兰',
    'Somalia': '索马里',
    'Serbia': '塞尔维亚',
    'Suriname': '苏里南',
    'Slovakia': '斯洛伐克',
    'Slovenia': '斯洛文尼亚',
    'Sweden': '瑞典',
    'Swaziland': '斯威士兰',
    'Syria': '叙利亚',
    'Chad': '乍得',
    'Togo': '多哥',
    'Thailand': '泰国',
    'Tajikistan': '塔吉克斯坦',
    'Turkmenistan': '土库曼斯坦',
    'East Timor': '东帝汶',
    'Trinidad and Tobago': '特里尼达和多巴哥',
    'Tunisia': '突尼斯',
    'Turkey': '土耳其',
    'Tanzania': '坦桑尼亚',
    'Uganda': '乌干达',
    'Ukraine': '乌克兰',
    'Uruguay': '乌拉圭',
    'United States': '美国',
    'Uzbekistan': '乌兹别克斯坦',
    'Venezuela': '委内瑞拉',
    'Vietnam': '越南',
    'Vanuatu': '瓦努阿图',
    'West Bank': '西岸',
    'Yemen': '也门',
    'South Africa': '南非',
    'Zambia': '赞比亚',
    'Zimbabwe': '津巴布韦'
}


map_ = Map(opts.InitOpts(width='1200px', height='600px')).add(series_name="世界各国病死率",  # 设置提示框标签
                 data_pair=a,  # 输入数据
                 maptype="world",  # 设置地图类型为世界地图
                 name_map=nameMap,  # 添加映射
                 is_map_symbol_show=False  # 不显示标记点
                 )

# 设置系列配置项
map_.set_series_opts(label_opts=opts.LabelOpts(is_show=False))  # 不显示国家名称
# 设置全局配置项
map_.set_global_opts(title_opts=opts.TitleOpts(title="国外疫情情况"),  # 设置图标题
                    visualmap_opts=opts.VisualMapOpts(max_=1000000, is_piecewise=True))  # 显示图例

# map_.set_global_opts(title_opts=opts.TitleOpts(title="国外疫情情况"),  # 设置图标题
#                      visualmap_opts=opts.VisualMapOpts(pieces=[  # 自定义分组的分店和颜色
#                              {"min": 900000, "color": "#800000"},
#                              {"min": 50000, "max": 500000, "lable":'0.15~0.19', "color": "#AA0000"},  # 栗色
#                              {"min": 10000, "max": 50000, "color": "#CC0000"},  # 耐火砖
#                              {"min": 1000, "max": 10000, "color": "#FF0000"},  # 印度红
#                              {"min": 0, "max": 1000, "color": "#FF3333"},  # 玫瑰棕色
#                              {"max": 0, "color": "#FFCCCC"},  # 薄雾玫瑰
#                      ],


#                              is_piecewise=True))  # 显示分段式图例


map_.render("国外疫情情况.html")

最后效果图:

 

 

如果你处于想学Python或者正在学习Python,Python的教程不少了吧,但是是最新的吗?说不定你学了可能是两年前人家就学过的内容,在这小编分享一波2020最新的Python教程。获取方式,私信小编 “ 资料 ”,即可免费获取哦!

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!