本文主要参考下面两篇博文,并在部分细节处做了修改。
https://blog.csdn.net/linolzhang/article/details/97833354
一、数据集准备
(训练集验证集测试集的数据分别准备)
1、标注数据集
大多数人会用labelme来标注数据集,然后用labelme将每张标注图片都生成一个json文件。labelme教程网上很多,这里不再赘述。
本人由于原图的标注目标很小,用labelme标注未免不精确,所以先用PS手动标注后再写代码把标注图转换成了labelme格式的json文件。
结果如图:
2、将这些json文件转换成coco格式
这一步我使用如下代码可成功转换。
# -*- coding:utf-8 -*-
import os, sys
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
from labelme import utils
import numpy as np
import glob
import PIL.Image
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(MyEncoder, self).default(obj)
class labelme2coco(object):
def __init__(self, labelme_json=[], save_json_path='./tran.json'):
'''
:param labelme_json: 所有labelme的json文件路径组成的列表
:param save_json_path: json保存位置
'''
self.labelme_json = labelme_json
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
# self.data_coco = {}
self.label = []
self.annID = 1
self.height = 0
self.width = 0
self.save_json()
def data_transfer(self):
for num, json_file in enumerate(self.labelme_json):
with open(json_file, 'r') as fp:
data = json.load(fp) # 加载json文件
self.images.append(self.image(data, num))
for shapes in data['shapes']:
label = shapes['label']
if label not in self.label:
self.categories.append(self.categorie(label))
self.label.append(label)
points = shapes['points'] # 这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
points.append([points[0][0], points[1][1]])
points.append([points[1][0], points[0][1]])
self.annotations.append(self.annotation(points, label, num))
self.annID += 1
def image(self, data, num):
image = {}
#img = utils.img_b64_to_arr(data['imageData']) # 解析原图片数据
# img=io.imread(data['imagePath']) # 通过图片路径打开图片
# img = cv2.imread(data['imagePath'], 0)
# height, width = img.shape[:2]
height = data['imageHeight']
width = data['imageWidth']
image['height'] = height
image['width'] = width
image['id'] = num + 1
image['file_name'] = data['imagePath'].split('/')[-1]
self.height = height
self.width = width
return image
def categorie(self, label):
categorie = {}
categorie['supercategory'] = 'Cancer'
categorie['id'] = len(self.label) + 1 # 0 默认为背景
categorie['name'] = label
return categorie
def annotation(self, points, label, num):
annotation = {}
annotation['segmentation'] = [list(np.asarray(points).flatten())]
annotation['iscrowd'] = 0
annotation['image_id'] = num + 1
# annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
# list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
annotation['bbox'] = list(map(float, self.getbbox(points)))
annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
# annotation['category_id'] = self.getcatid(label)
annotation['category_id'] = self.getcatid(label) # 注意,源代码默认为1
annotation['id'] = self.annID
return annotation
def getcatid(self, label):
for categorie in self.categories:
if label == categorie['name']:
return categorie['id']
return 1
def getbbox(self, points):
# img = np.zeros([self.height,self.width],np.uint8)
# cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线
# cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
'''从mask反算出其边框
mask:[h,w] 0、1组成的图片
1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
'''
# np.where(mask==1)
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
# 解析左上角行列号
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
# 解析右下角行列号
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
# return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
# return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
# return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
return [left_top_c, left_top_r, right_bottom_c - left_top_c,
right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
data_coco = {}
data_coco['images'] = self.images
data_coco['categories'] = self.categories
data_coco['annotations'] = self.annotations
return data_coco
def save_json(self):
self.data_transfer()
self.data_coco = self.data2coco()
# 保存json文件
json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) # indent=4 更加美观显示
if __name__ == '__main__':
src_folder = os.path.abspath(sys.argv[1])
# load src - join json
labelme_json = glob.glob(src_folder + '/*.json')
labelme2coco(labelme_json, sys.argv[2])
在运行这个代码时,只有把所有需要的模块都安装在anaconda当时安装labelme的那个虚拟环境下才能运行成功,当然这个代码的运行也是要在labelme这个虚拟环境下的。
二、环境搭建(linux)
1、创建pytorch环境
conda create --name maskrcnn_benchmark
source activate maskrcnn_benchmark #所有模块的安装都在此虚拟环境下
conda install ipython
pip install ninja yacs cython matplotlib pyqt5
conda install pytorch-nightly torchvision=0.2.1 cudatoolkit=9.0
上面的步骤执行完之后还要离线安装torch1.0.1。因为某种墙的存在,在线下载torch不太容易实现,国内镜像源又没有1.0.1这个版本。而经过博主长期的踩坑发现torch1.0.1和torchvision=0.2.1加上numpy1.17才是可用组合。这是torch1.0.1的下载链接: http://download.pytorch.org/whl/cu100/torch-1.0.1-cp36-cp36m-linux_x86_64.whl,建议直接迅雷下载。下载完成后,cd到模块所在目录然后pip install torch-1.0.1-cp36-cp36m-linux_x86_64.whl即可。(本人的python是3.6,请酌情修改下载链接)
2、安装cocoapi及apex
export INSTALL_DIR=$PWD
# install pycocotools
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install
# install apex
cd $INSTALL_DIR
git clone https://github.com/NVIDIA/apex.git
cd apex
python setup.py install --cuda_ext --cpp_ext
3、编译模型代码
# install PyTorch Detection
cd $INSTALL_DIR
#maskrcnn-benchmark
#git clone https://github.com/facebookresearch/maskrcnn-benchmark.git
git clone https://github.com/zjhuang22/maskscoring_rcnn
cd maskscoring_rcnn
python setup.py build develop
三、训练前的准备
1、数据和预训练模型准备
在下载的maskscoring_rcnn中新建一个datasets目录,可按如下结构放置你的json文件和原始图像
─ datasets
└── annotations
├── coco_train.json
└── coco_test.json
└── coco_train #该文件夹放置训练集的原始图像
└── coco_test #该文件夹放置测试集的原始图像
另外,maskscoring_rcnn的pretrained_models目录下需要放置R-101.pkl和R-50.pkl这两个预训练模型,如果服务器连了网,在开始训练模型之前会自动下载这两个模型,如果服务器没有网就需要手动下载放到pretrained_models下了。作者在GitHub也放了有这些模型的百度网盘链接。
2、修改参数
(1)修改 maskscoring_rcnn/configs
目录下的配置文件,选择其中的 e2e_ms_rcnn_R_50_FPN_1x.yaml
训练脚本,修改如下:
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
WEIGHT: "catalog://ImageNetPretrained/MSRA/R-50"
PRETRAINED_MODELS: 'pretrained_models'
DATASETS:
TRAIN: ("coco_train_xxx",) # 1.设置训练验证集,名字可以随意起,和其他配置文件对应即可。
TEST: ("coco_val_xxx",)
……(省略数行)
SOLVER:
BASE_LR: 0.002 #设置基础学习率,原为0.02
WEIGHT_DECAY: 0.0001
STEPS: (60000, 80000)
MAX_ITER: 5000 #2.设置最大迭代次数,可根据图片数量酌情增减,改小也可以更快看到结果。原为90000
(2)修改 maskscoring_rcnn/maskrcnn_benchmark/config
下的 paths_catalog.py
文件:
DATASETS = {
"coco_2014_train": ( "coco/train2014", "coco/annotations/instances_train2014.json",),
"coco_2014_val": ("coco/val2014", "coco/annotations/instances_val2014.json"),
"coco_2014_minival": ( "coco/val2014", "coco/annotations/instances_minival2014.json", ),
"coco_2014_valminusminival": (
"coco/val2014", "coco/annotations/instances_valminusminival2014.json", ),
#添加自己的数据集路径信息,在相应的代码段后面添加两行即可
"coco_train_xxx": ("coco_mydata_train", "annotations/coco_mydata_train.json"),
"coco_val_xxx": ("coco_mydata_test", "annotations/coco_mydata_test.json"),
}
(3)修改 maskscoring_rcnn/maskrcnn_benchmark/config
下的 defaults.py
配置文件:
_C.MODEL.ROI_BOX_HEAD.NUM_CLASSES = 3 # 1.修改分类数量,coco对应81(80+1),注意1加的是背景
_C.SOLVER.BASE_LR = 0.005 # 2.修改学习率,默认为0.001
_C.SOLVER.CHECKPOINT_PERIOD = 1000 # 3.修改check point数量,根据需要自定义
_C.SOLVER.IMS_PER_BATCH = 1 # 4.修改batch size,默认16
_C.TEST.IMS_PER_BATCH = 1 # 5.修改test batch size,默认8
_C.OUTPUT_DIR = "weights/" # 6.设置模型保存路径(对应自定义文件夹)
四、开始训练
到maskscoring_rcnn
所在目录下执行:
python tools/train_net.py --config-file configs/e2e_ms_rcnn_R_50_FPN_1x.yaml
python tools/test_net.py --config-file configs/e2e_ms_rcnn_R_50_FPN_1x.yaml
在models里面可以查看训练日志。
五、模型预测
1、修改maskscoring_rcnn/configs
路径下的对应的yaml
文件的权重路径。
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
WEIGHT: "weights/model_0005000.pth" # 训练好的模型路径
BACKBONE:
CONV_BODY: "R-50-FPN"
OUT_CHANNELS: 256
2、修改maskscoring_rcnn/demo
路径下的 predictor.py
文件,添加类别信息。这个文件在原来的demo目录下是没有的,从mask rcnn benchmark的demo文件下复制过来即可。
class COCODemo(object):
# COCO categories for pretty print
CATEGORIES = [
"__background",
"cla_a",#根据自己的数据集修改类别信息
"cla_b",
"cla_c",
]
3、在maskscoring_rcnn/demo
下新建 predict.py,用于预测。
#!/usr/bin/env python
# coding=UTF-8
import os, sys
import numpy as np
import cv2
from maskrcnn_benchmark.config import cfg
from predictor import COCODemo
# 1.修改后的配置文件
config_file = "configs/e2e_ms_rcnn_R_50_FPN_1x.yaml"
# 2.配置
cfg.merge_from_file(config_file) # merge配置文件
cfg.merge_from_list(["MODEL.MASK_ON", True]) # 打开mask开关
cfg.merge_from_list(["MODEL.DEVICE", "cuda"]) # or设置为CPU ["MODEL.DEVICE", "cpu"]
#cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
coco_demo = COCODemo(
cfg,
min_image_size=800,
confidence_threshold=0.5, # 3.设置置信度
)
if __name__ == '__main__':
in_folder = './datasets/test_images/'
out_folder = './datasets/test_images_out/'
if not os.path.exists(out_folder):
os.makedirs(out_folder)
for file_name in os.listdir(in_folder):
if not file_name.endswith(('jpg', 'png')):
continue
# load file
img_path = os.path.join(in_folder, file_name)
image = cv2.imread(img_path)
# method1. 直接得到opencv图片结果
#predictions = coco_demo.run_on_opencv_image(image)
#save_path = os.path.join(out_folder, file_name)
#cv2.imwrite(save_path, predictions)
# method2. 获取预测结果
predictions = coco_demo.compute_prediction(image)
top_predictions = coco_demo.select_top_predictions(predictions)
# draw
img = coco_demo.overlay_boxes(image, top_predictions)
img = coco_demo.overlay_mask(img, predictions)
img = coco_demo.overlay_class_names(img, top_predictions)
save_path = os.path.join(out_folder, file_name)
cv2.imwrite(save_path, img)
# print results
boxes = top_predictions.bbox.numpy()
labels = top_predictions.get_field("labels").numpy() #label = labelList[np.argmax(scores)]
scores = top_predictions.get_field("scores").numpy()
masks = top_predictions.get_field("mask").numpy()
for i in range(len(boxes)):
print('box:', i, ' label:', labels[i])
x1,y1,x2,y2 = [round(x) for x in boxes[i]] # = map(int, boxes[i])
print('x1,y1,x2,y2:', x1,y1,x2,y2)
4、运行程序。
python demo/predict.py
在运行的过程中会报错找不到文件或者无法导入相关的库,此时把相应的文件从 mask rcnn benchmark 对应的文件夹复制过来即可。具体操作可参考:https://www.cnblogs.com/littleLittleTiger/p/12582747.html
成功截图如下
来源:oschina
链接:https://my.oschina.net/u/4314113/blog/3231032