HDU 1716 排列2

最后都变了- 提交于 2020-04-04 01:46:13

排列2

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3107    Accepted Submission(s): 1220


Problem Description
Ray又对数字的列产生了兴趣:
现有四张卡片,用这四张卡片能排列出很多不同的4位数,要求按从小到大的顺序输出这些4位数。
 

 

Input
每组数据占一行,代表四张卡片上的数字(0<=数字<=9),如果四张卡片都是0,则输入结束。
 

 

Output
对每组卡片按从小到大的顺序输出所有能由这四张卡片组成的4位数,千位数字相同的在同一行,同一行中每个四位数间用空格分隔。
每组输出数据间空一行,最后一组数据后面没有空行。
 

 

Sample Input
1 2 3 4 1 1 2 3 0 1 2 3 0 0 0 0
 

 

Sample Output
1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321 1123 1132 1213 1231 1312 1321 2113 2131 2311 3112 3121 3211 1023 1032 1203 1230 1302 1320 2013 2031 2103 2130 2301 2310 3012 3021 3102 3120 3201 3210
 

 

Source
 

 

Recommend
lcy

 

1,利用next_permutation()函数:

boolean next_permutation(a.begin(),a.end()) 该函数是以输入字符串中的字符所构建的按字典顺序全排列中,判断当前字符串之后是否还有下一个字符串 如果next_permutation的执行次数少于全排列的个数,返回true 例如 a="abc" 全排列有 "abc" "acb" "bac" "bca" "cab" "cba"   执行一次next_permutation 返回true  a变成 "acb"再执行一次next_permutation 返回true a变成 "bac"...当执行到a="cba" 时 由于这已经是全排列的最后一个字符串,所以 再次执行next_permutation 则返回false
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;

int main(){

    //freopen("input.txt","r",stdin);

    int a[5],tag=0;
    while(scanf("%d%d%d%d",&a[0],&a[1],&a[2],&a[3])){
        if(a[0]==0 && a[1]==0 && a[2]==0 && a[3]==0)
            break;
        if(tag)
            printf("\n");
        tag=1;
        int flag=1,tmp;
        do{
            if(a[0]==0)
                continue;
            if(flag){
                printf("%d%d%d%d",a[0],a[1],a[2],a[3]);
                flag=0;
            }else if(tmp==a[0])
                printf(" %d%d%d%d",a[0],a[1],a[2],a[3]);
            else
                printf("\n%d%d%d%d",a[0],a[1],a[2],a[3]);
            tmp=a[0];
        }while(next_permutation(a,a+4));
        printf("\n");
    }
    return 0;
}

 

 

2,

引言

对一个给定数据进行全排列,在各种场合经常会用到。组合数学中,生成全排列的方法有很多,卢开澄老师的《组合数学》中就介绍了三种:序数法,字典序法,临位互换法等。其中以字典序法由于算法简单,并且使用的时候可以依照当前状态获取下一个状态,直到所有排列全部完成,方便在程序中随要随用,应用比较广泛,STL中的Next_permutation也是使用此法。


算法定义

首先看什么叫字典序,顾名思义就是按照字典的顺序(a-z, 1-9)。以字典序为基础,我们可以得出任意两个数字串的大小。比如 "1" < "12"<"13"。 就是按每个数字位逐个比较的结果。对于一个数字串,“123456789”, 可以知道最小的串是 从小到大的有序串“123456789”,而最大的串是从大到小的有序串“*987654321”。这样对于“123456789”的所有排列,将他们排序,即可以得到按照字典序排序的所有排列的有序集合。

如此,当我们知道当前的排列时,要获取下一个排列时,就可以范围有序集合中的下一个数(恰好比他大的)。比如,当前的排列时“123456879”, 那么恰好比他大的下一个排列就是“123456897”。 当当前的排列时最大的时候,说明所有的排列都找完了。

 

于是可以有下面计算下一个排列的算法:

设P是1~n的一个全排列:p=p1p2......pn=p1p2......pj-1pjpj+1......pk-1pkpk+1......pn

 

  1)从排列的右端开始,找出第一个比右边数字小的数字的序号j(j从左端开始计算),即 j=max{i|pi<pi+1}

 

  2)在pj的右边的数字中,找出所有比pj大的数中最小的数字pk,即 k=max{i|pi>pj}(右边的数从右至左是递增的,因此k是所有大于pj的数字中序号最大者)

 

  3)对换pi,pk

 

  4)再将pj+1......pk-1pkpk+1......pn倒转得到排列p'=p1p2.....pj-1pjpn.....pk+1pkpk-1.....pj+1,这就是排列p的下一个排列。

 


证明

 
要证明这个算法的正确性,我们只要证明生成的下一个排序是恰好比当前排列大的一个序列即可。图1.11是从卢开澄老师的《组合数学》中截取的一个有1234生成所有排序的字典序树。从左到右的每一个根到叶子几点的路径就是一个排列。下面我们将以这个图为基础,来证明上面算法的正确性。
 
算法步骤1,得到的子串 s = {pj+1,.....,pn}, 是按照从大到小进行排列的。即有 pj+1 > pj+2 > ... > pn, 因为 j=max{i|pi<pi+1}。
算法步骤2,得到了最小的比pj大的pk,从n往j数,第一个比j大的数字。将pk和pj替换,保证了替换后的数字比当前的数字要大。
于是得到的序列为p1p2...pj-1pkpj+1...pk-1pjpk-1...pn.注意这里已经将pk替换成了pk。
这时候我们注意到比p1..pj-1pk.....,恰好比p1....pj.....pn大的数字集合。我们在这个集合中挑选出最小的一个即时所要求的下一个排列。
算法步骤3,即是将pk后面的数字逆转一下(从从大到小,变成了从小到大。)
 
由此经过上面3个步骤得到的下个排列时恰好比当前排列大的排列。
同时我们注意到,当所有排列都找完时,此时数字串从大到小排列。步骤1得到的j = 0,算法结束。
//字典序法生成全排列
#include <iostream>
#include <string>
using namespace std;
string input,s;

void perm(){
    int flag=1;
    if(input[0]!='0'){flag=0;cout<<input;}s=input;
    while(1){
        int index=-1;
        for(int i=input.size()-2;i>=0;i--) // 从最右开始,找到第一个比右边小的数字,赋值给index
        {
            if(input[i]<input[i+1]){
                index=i;
                break;
            }
        }
        if(index==-1)break; // 所有排列遍历完,break while

        char M='9'; // M为监视哨兼临时变量(for swap)
        int C; // C为所找到数字的序号
        for(int i=index+1;i<=input.size()-1;i++){ // 再从最右开始,找到input[index]右边比input[index]大的数字
            if(input[i]<=input[index])continue;
            if(input[i]<=M){
                C=i;
                M=input[i];
            }
        } 
        input[C]=input[index];
        input[index]=M; // 交换input[index]和input[C]
        int len=input.size()-1-index;
        for(int i=1;i<=len/2;i++){ // 将index后面的部分倒置,比如7421,倒置为1247,只需要对称交换即可
            char t=input[index+i];
            input[index+i]=input[input.size()-i];
            input[input.size()-i]=t;
        }
        if(input[0]=='0'){ s=input;continue; }
        if(s[0]==input[0]){ cout<<' '<<input;s=input;flag=0; }
        else { if(flag==0)cout<<endl<<input;else cout<<input; s=input; }
    }
    cout<<endl;
}

int main(){
    
    char str[5];
    int cnt=0;
    //freopen("hdu1716in.txt","r",stdin);
    //freopen("hdu1716out.txt","w",stdout);
    while(cin>>str[0]>>str[1]>>str[2]>>str[3])
    { 
        str[4]='\0';input=str;
        if(str[0]=='0'&&str[1]=='0'&&str[2]=='0'&&str[3]=='0')break;
        if(cnt)cout<<endl;cnt++;
        perm();
    }   
    //system("pause");
    //注意:有些系统虽然支持 system("pause"); 
    //但是如果循环会结束,运行到该句就会 Wrong answer
    // 这是应该注意的地方。 
    return 0;
}

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!