OpenCV GaussianBlur 结果不一致
TL;DR
OpenCV高版本的GaussianBlur,某些条件下会用定点化计算替代浮点计算,导致跨版本的结果不一致:
void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst, const uint16_t/*ufixedpoint16*/* fkx, int fkx_size, const uint16_t/*ufixedpoint16*/* fky, int fky_size, int borderType) { CV_INSTRUMENT_REGION(); CV_Assert(src.depth() == CV_8U && ((borderType & BORDER_ISOLATED) || !src.isSubmatrix())); fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker( src.ptr<uint8_t>(), src.step1(), dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(), (const ufixedpoint16*)fkx, fkx_size, (const ufixedpoint16*)fky, fky_size, borderType & ~BORDER_ISOLATED); { // TODO AVX guard (external call) parallel_for_(Range(0, dst.rows), invoker, std::max(1, std::min(getNumThreads(), getNumberOfCPUs()))); } }
问题描述
在移植OpenCV的GaussianBlur相关函数,测试阶段发现和OpenCV结果不一致,但是肉眼看不出差异。于是对比了多个版本的OpenCV,发现它们之间结果也不一致。
样例代码
namespace cv { static void test_GaussianBlur() { std::string im_pth = "../../imgs/IU.bmp"; Mat src = imread(im_pth); Mat dst; Size size(3, 3); GaussianBlur(src, dst, size, 0, 0); imwrite("IU-gaussian-blur.bmp", dst); } }
测试结果
第一种结果:
OpenCV 2.4.13
OpenCV 3.1.0
第二种结果:
OpenCV 3.4.5
OpenCV 3.4.9
以及我的移植版本
说明:所用OpenCV都是PC CPU版本,关闭IPP优化。
调试排查
以OpenCV3.4.9为例,会把满足一定条件的图像,执行定点化版本的高斯模糊,而不是浮点数版本的计算。这是相当于OpenCV3.1.0 / 2.4.13版本增加的内容。
看完整源码:
void GaussianBlur(InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType) { CV_INSTRUMENT_REGION(); int type = _src.type(); Size size = _src.size(); _dst.create( size, type ); if( (borderType & ~BORDER_ISOLATED) != BORDER_CONSTANT && ((borderType & BORDER_ISOLATED) != 0 || !_src.getMat().isSubmatrix()) ) { if( size.height == 1 ) ksize.height = 1; if( size.width == 1 ) ksize.width = 1; } if( ksize.width == 1 && ksize.height == 1 ) { _src.copyTo(_dst); return; } bool useOpenCL = (ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && ((ksize.width == 3 && ksize.height == 3) || (ksize.width == 5 && ksize.height == 5)) && _src.rows() > ksize.height && _src.cols() > ksize.width); CV_UNUSED(useOpenCL); int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); Mat kx, ky; createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); CV_OCL_RUN(useOpenCL, ocl_GaussianBlur_8UC1(_src, _dst, ksize, CV_MAT_DEPTH(type), kx, ky, borderType)); CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && (size_t)_src.rows() > kx.total() && (size_t)_src.cols() > kx.total(), ocl_sepFilter2D(_src, _dst, sdepth, kx, ky, Point(-1, -1), 0, borderType)) Mat src = _src.getMat(); Mat dst = _dst.getMat(); Point ofs; Size wsz(src.cols, src.rows); if(!(borderType & BORDER_ISOLATED)) src.locateROI( wsz, ofs ); CALL_HAL(gaussianBlur, cv_hal_gaussianBlur, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, cn, ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height, sigma1, sigma2, borderType&~BORDER_ISOLATED); CV_OVX_RUN(true, openvx_gaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)) //CV_IPP_RUN_FAST(ipp_GaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)); if(sdepth == CV_8U && ((borderType & BORDER_ISOLATED) || !_src.getMat().isSubmatrix())) { std::vector<ufixedpoint16> fkx, fky; createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2); static bool param_check_gaussian_blur_bitexact_kernels = utils::getConfigurationParameterBool("OPENCV_GAUSSIANBLUR_CHECK_BITEXACT_KERNELS", false); if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fkx)) { CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fx kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2)); } else if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fky)) { CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fy kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2)); } else { if (src.data == dst.data) src = src.clone(); //-------------!! 注意这里,dispatch到fixedpoint这一版本的实现上 CV_CPU_DISPATCH(GaussianBlurFixedPoint, (src, dst, (const uint16_t*)&fkx[0], (int)fkx.size(), (const uint16_t*)&fky[0], (int)fky.size(), borderType), CV_CPU_DISPATCH_MODES_ALL); return; } } //-------!!先前几行的dispatch分支算好后直接return,不会fall back到sepFilter2D sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType); }
而OpenCV 3.1.0的实现则是这样的:
void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType ) { int type = _src.type(); Size size = _src.size(); _dst.create( size, type ); if( borderType != BORDER_CONSTANT && (borderType & BORDER_ISOLATED) != 0 ) { if( size.height == 1 ) ksize.height = 1; if( size.width == 1 ) ksize.width = 1; } if( ksize.width == 1 && ksize.height == 1 ) { _src.copyTo(_dst); return; } #ifdef HAVE_TEGRA_OPTIMIZATION Mat src = _src.getMat(); Mat dst = _dst.getMat(); if(sigma1 == 0 && sigma2 == 0 && tegra::useTegra() && tegra::gaussian(src, dst, ksize, borderType)) return; #endif CV_IPP_RUN(true, ipp_GaussianBlur( _src, _dst, ksize, sigma1, sigma2, borderType)); Mat kx, ky; createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); sepFilter2D(_src, _dst, CV_MAT_DEPTH(type), kx, ky, Point(-1,-1), 0, borderType ); }
显然它是始终调用sepFilter2D的实现的。
来源:https://www.cnblogs.com/zjutzz/p/12621430.html