爬虫之爬汽车之家

孤人 提交于 2020-03-29 00:55:21

一、话说爬虫

  先说说爬虫,爬虫常被用来抓取特定网站网页的HTML数据,定位在后端数据的获取,而对于网站而言,爬虫给网站带来流量的同时,一些设计不好的爬虫由于爬得太猛,导致给网站来带很大的负担,当然再加上一些网站并不希望被爬取,所以就出现了许许多多的反爬技术。

二、安装模块

1. requests

模块安装方法:

pip3 install requests

2、beautisoup模块

软件安装方法:

pip3 install beautifulsoup4  或 pip3 install bs4

3、lxml模块

#必须先安装whell依赖  (请换成国内pip源进行安装,否则容易报错)pip install wheel
#在cmd中,输入python进入python。
然后输入import pip;print(pip.pep425tags.get_supported()),界面上输出当前python的版本信息,如图。

再跟据上面查到的版本信息,找到下面对应的版本进行安装。

#下载地址:https://pypi.python.org/pypi/lxml/3.7.3 (网站打不开,请翻墙,就可以打开)#python3.5就选择cp3m版本
lxml-3.7.3-cp35-cp35m-win32.whl#安装方法pip3 install lxml-3.6.4-cp35-cp35m-win_amd64.whl

进入python3,输入import lxml,未报错,即表示安装成功。

三、requests模块用法

Python标准库中提供了:urllib、urllib2、httplib等模块以供Http请求,但是,它的 API 太渣了。它是为另一个时代、另一个互联网所创建的。它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务。

Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests可以轻而易举的完成浏览器可有的任何操作。

1、GET请求

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# 1、无参数实例
  
import requests
  
ret = requests.get('https://github.com/timeline.json')
  
print ret.url
print ret.text
  
  
  
# 2、有参数实例
  
import requests
  
payload = {'key1''value1''key2''value2'}
ret = requests.get("http://httpbin.org/get", params=payload)
  
print ret.url
print ret.text

2、POST请求

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# 1、基本POST实例
  
import requests
  
payload = {'key1''value1''key2''value2'}
ret = requests.post("http://httpbin.org/post", data=payload)
  
print ret.text
  
  
# 2、发送请求头和数据实例
  
import requests
import json
  
url = 'https://api.github.com/some/endpoint'
payload = {'some''data'}
headers = {'content-type''application/json'}
  
ret = requests.post(url, data=json.dumps(payload), headers=headers)
  
print ret.text
print ret.cookies

3、requests属性

response = requests.get('URL')  
                response.text  # 获取文本内容
                response.content  # 获取文本内容,字节
                response.encoding  # 设置返回结果的编码
                response.aparent_encoding  # 获取网站原始的编码
                response.status_code  # 状态码
                response.cookies.get_dict()  # cookies

4、关系和方法

- 方法关系
    requests.get(url, params=None**kwargs)

    requests.post(url, data=None, json=None**kwargs)

    requests.put(url, data=None**kwargs)

    requests.head(url, **kwargs)

    requests.delete(url, **kwargs)

    requests.patch(url, data=None**kwargs)

    requests.options(url, **kwargs)

 - 在此方法的基础上构建

    requests.request(method, url, **kwargs)
- method:  提交方式
            - url:     提交地址
            - params:  在URL中传递的参数,GET 
                requests.request(
                    method='GET',
                    url= 'http://www.nulige.com',
                    params = {'k1':'v1','k2':'v2'}
                )
                # http://www.nulige.com?k1=v1&k2=v2
            - data:    在请求体里传递的数据
            
                requests.request(
                    method='POST',
                    url= 'http://www.nulige.com',
                    params = {'k1':'v1','k2':'v2'},
                    data = {'use':'alex','pwd': '123','x':[11,2,3}
                )
                
                请求头:
                    content-type: application/url-form-encod.....
                    
                请求体:
                    use=alex&pwd=123
                
                
            - json   在请求体里传递的数据
                requests.request(
                    method='POST',
                    url= 'http://www.oldboyedu.com',
                    params = {'k1':'v1','k2':'v2'},
                    json = {'use':'alex','pwd': '123'}
                )
                请求头:
                    content-type: application/json
                    
                请求体:
                    "{'use':'alex','pwd': '123'}"
                
                PS: 字典中嵌套字典时
                
            - headers   请求头
            
                requests.request(
                    method='POST',
                    url= 'http://www.oldboyedu.com',
                    params = {'k1':'v1','k2':'v2'},
                    json = {'use':'alex','pwd': '123'},
                    headers={
                        'Referer': 'http://dig.chouti.com/',
                        'User-Agent': "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36"
                    }
                )
                 - cookies  Cookies
             
                 - files    上传文件
             
                 - auth      基本认证(headers中加入加密的用户名和密码)
             
                 - timeout  请求和响应的超时时间
             
                 - allow_redirects  是否允许重定向
             
                 - proxies   代理 (nginx反向代理模块)
             
                 - verify   是否忽略证书
             
                 - cert     证书文件
             
                 - stream   流的方式迭代下载
             
                - session: 用于保存客户端历史访问信息

 参数用法示例:

def param_method_url():
    # requests.request(method='get', url='http://127.0.0.1:8000/test/')
    # requests.request(method='post', url='http://127.0.0.1:8000/test/')
    pass


def param_param():
    # - 可以是字典
    # - 可以是字符串
    # - 可以是字节(ascii编码以内)

    # requests.request(method='get',
    # url='http://127.0.0.1:8000/test/',
    # params={'k1': 'v1', 'k2': '水电费'})

    # requests.request(method='get',
    # url='http://127.0.0.1:8000/test/',
    # params="k1=v1&k2=水电费&k3=v3&k3=vv3")

    # requests.request(method='get',
    # url='http://127.0.0.1:8000/test/',
    # params=bytes("k1=v1&k2=k2&k3=v3&k3=vv3", encoding='utf8'))

    # 错误
    # requests.request(method='get',
    # url='http://127.0.0.1:8000/test/',
    # params=bytes("k1=v1&k2=水电费&k3=v3&k3=vv3", encoding='utf8'))
    pass


def param_data():
    # 可以是字典
    # 可以是字符串
    # 可以是字节
    # 可以是文件对象

    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # data={'k1': 'v1', 'k2': '水电费'})

    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # data="k1=v1; k2=v2; k3=v3; k3=v4"
    # )

    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # data="k1=v1;k2=v2;k3=v3;k3=v4",
    # headers={'Content-Type': 'application/x-www-form-urlencoded'}
    # )

    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # data=open('data_file.py', mode='r', encoding='utf-8'), # 文件内容是:k1=v1;k2=v2;k3=v3;k3=v4
    # headers={'Content-Type': 'application/x-www-form-urlencoded'}
    # )
    pass


def param_json():
    # 将json中对应的数据进行序列化成一个字符串,json.dumps(...)
    # 然后发送到服务器端的body中,并且Content-Type是 {'Content-Type': 'application/json'}
    requests.request(method='POST',
                     url='http://127.0.0.1:8000/test/',
                     json={'k1': 'v1', 'k2': '水电费'})


def param_headers():
    # 发送请求头到服务器端
    requests.request(method='POST',
                     url='http://127.0.0.1:8000/test/',
                     json={'k1': 'v1', 'k2': '水电费'},
                     headers={'Content-Type': 'application/x-www-form-urlencoded'}
                     )


def param_cookies():
    # 发送Cookie到服务器端
    requests.request(method='POST',
                     url='http://127.0.0.1:8000/test/',
                     data={'k1': 'v1', 'k2': 'v2'},
                     cookies={'cook1': 'value1'},
                     )
    # 也可以使用CookieJar(字典形式就是在此基础上封装)
    from http.cookiejar import CookieJar
    from http.cookiejar import Cookie

    obj = CookieJar()
    obj.set_cookie(Cookie(version=0, name='c1', value='v1', port=None, domain='', path='/', secure=False, expires=None,
                          discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False,
                          port_specified=False, domain_specified=False, domain_initial_dot=False, path_specified=False)
                   )
    requests.request(method='POST',
                     url='http://127.0.0.1:8000/test/',
                     data={'k1': 'v1', 'k2': 'v2'},
                     cookies=obj)


def param_files():
    # 发送文件
    # file_dict = {
    # 'f1': open('readme', 'rb')
    # }
    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # files=file_dict)

    # 发送文件,定制文件名
    # file_dict = {
    # 'f1': ('test.txt', open('readme', 'rb'))
    # }
    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # files=file_dict)

    # 发送文件,定制文件名
    # file_dict = {
    # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf")
    # }
    # requests.request(method='POST',
    # url='http://127.0.0.1:8000/test/',
    # files=file_dict)

    # 发送文件,定制文件名
    # file_dict = {
    #     'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf", 'application/text', {'k1': '0'})
    # }
    # requests.request(method='POST',
    #                  url='http://127.0.0.1:8000/test/',
    #                  files=file_dict)

    pass


def param_auth():
    from requests.auth import HTTPBasicAuth, HTTPDigestAuth

    ret = requests.get('https://api.github.com/user', auth=HTTPBasicAuth('wupeiqi', 'sdfasdfasdf'))
    print(ret.text)

    # ret = requests.get('http://192.168.1.1',
    # auth=HTTPBasicAuth('admin', 'admin'))
    # ret.encoding = 'gbk'
    # print(ret.text)

    # ret = requests.get('http://httpbin.org/digest-auth/auth/user/pass', auth=HTTPDigestAuth('user', 'pass'))
    # print(ret)
    #


def param_timeout():
    # ret = requests.get('http://google.com/', timeout=1)
    # print(ret)

    # ret = requests.get('http://google.com/', timeout=(5, 1))
    # print(ret)
    pass


def param_allow_redirects():
    ret = requests.get('http://127.0.0.1:8000/test/', allow_redirects=False)
    print(ret.text)


def param_proxies():
    # proxies = {
    # "http": "61.172.249.96:80",
    # "https": "http://61.185.219.126:3128",
    # }

    # proxies = {'http://10.20.1.128': 'http://10.10.1.10:5323'}

    # ret = requests.get("http://www.proxy360.cn/Proxy", proxies=proxies)
    # print(ret.headers)


    # from requests.auth import HTTPProxyAuth
    #
    # proxyDict = {
    # 'http': '77.75.105.165',
    # 'https': '77.75.105.165'
    # }
    # auth = HTTPProxyAuth('username', 'mypassword')
    #
    # r = requests.get("http://www.google.com", proxies=proxyDict, auth=auth)
    # print(r.text)

    pass


def param_stream():
    ret = requests.get('http://127.0.0.1:8000/test/', stream=True)
    print(ret.content)
    ret.close()

    # from contextlib import closing
    # with closing(requests.get('http://httpbin.org/get', stream=True)) as r:
    # # 在此处理响应。
    # for i in r.iter_content():
    # print(i)


def requests_session():
    import requests

    session = requests.Session()

    ### 1、首先登陆任何页面,获取cookie

    i1 = session.get(url="http://dig.chouti.com/help/service")

    ### 2、用户登陆,携带上一次的cookie,后台对cookie中的 gpsd 进行授权
    i2 = session.post(
        url="http://dig.chouti.com/login",
        data={
            'phone': "8615131255089",
            'password': "xxxxxx",
            'oneMonth': ""
        }
    )

    i3 = session.post(
        url="http://dig.chouti.com/link/vote?linksId=8589623",
    )
    print(i3.text)

 参考:http://cn.python-requests.org/zh_CN/latest/user/quickstart.html#id4

四、BeautifulSoup

该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from bs4 import BeautifulSoup
 
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
asdf
    <div class="title">
        <b>The Dormouse's story总共</b>
        <h1>f</h1>
    </div>
<div class="story">Once upon a time there were three little sisters; and their names were
    <a  class="sister0" id="link1">Els<span>f</span>ie</a>,
    <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
    <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</div>
ad<br/>sf
<p class="story">...</p>
</body>
</html>
"""
 
soup = BeautifulSoup(html_doc, features="lxml")
# 找到第一个a标签
tag1 = soup.find(name='a')
# 找到所有的a标签
tag2 = soup.find_all(name='a')
# 找到id=link2的标签
tag3 = soup.select('#link2')

使用示例:

1
2
3
4
5
6
7
8
9
10
11
from bs4 import BeautifulSoup
 
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
    ...
</body>
</html>
"""
 
soup = BeautifulSoup(html_doc, features="lxml")

1. name,标签名称

1
2
3
4
5
# tag = soup.find('a')
# name = tag.name # 获取
# print(name)
# tag.name = 'span' # 设置
# print(soup)

2. attr,标签属性

1
2
3
4
5
6
# tag = soup.find('a')
# attrs = tag.attrs    # 获取
# print(attrs)
# tag.attrs = {'ik':123} # 设置
# tag.attrs['id'] = 'iiiii' # 设置
# print(soup)

3. children,所有子标签

1
2
# body = soup.find('body')
# v = body.children

4. children,所有子子孙孙标签

1
2
# body = soup.find('body')
# v = body.descendants

5. clear,将标签的所有子标签全部清空(保留标签名)

1
2
3
# tag = soup.find('body')
# tag.clear()
# print(soup)

6. decompose,递归的删除所有的标签

1
2
3
# body = soup.find('body')
# body.decompose()
# print(soup)

7. extract,递归的删除所有的标签,并获取删除的标签

1
2
3
# body = soup.find('body')
# v = body.extract()
# print(soup)

8. decode,转换为字符串(含当前标签);decode_contents(不含当前标签)

1
2
3
4
# body = soup.find('body')
# v = body.decode()
# v = body.decode_contents()
# print(v)

9. encode,转换为字节(含当前标签);encode_contents(不含当前标签)

1
2
3
4
# body = soup.find('body')
# v = body.encode()
# v = body.encode_contents()
# print(v)

10. find,获取匹配的第一个标签

1
2
3
4
5
# tag = soup.find('a')
# print(tag)
# tag = soup.find(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')
# tag = soup.find(name='a', class_='sister', recursive=True, text='Lacie')
# print(tag)

11. find_all,获取匹配的所有标签

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# tags = soup.find_all('a')
# print(tags)
 
# tags = soup.find_all('a',limit=1)
# print(tags)
 
# tags = soup.find_all(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')
# # tags = soup.find(name='a', class_='sister', recursive=True, text='Lacie')
# print(tags)
 
 
# ####### 列表 #######
# v = soup.find_all(name=['a','div'])
# print(v)
 
# v = soup.find_all(class_=['sister0', 'sister'])
# print(v)
 
# v = soup.find_all(text=['Tillie'])
# print(v, type(v[0]))
 
 
# v = soup.find_all(id=['link1','link2'])
# print(v)
 
# v = soup.find_all(href=['link1','link2'])
# print(v)
 
# ####### 正则 #######
import re
# rep = re.compile('p')
# rep = re.compile('^p')
# v = soup.find_all(name=rep)
# print(v)
 
# rep = re.compile('sister.*')
# v = soup.find_all(class_=rep)
# print(v)
 
# rep = re.compile('http://www.oldboy.com/static/.*')
# v = soup.find_all(href=rep)
# print(v)
 
# ####### 方法筛选 #######
# def func(tag):
# return tag.has_attr('class') and tag.has_attr('id')
# v = soup.find_all(name=func)
# print(v)
 
 
# ## get,获取标签属性
# tag = soup.find('a')
# v = tag.get('id')
# print(v)

12. has_attr,检查标签是否具有该属性

1
2
3
# tag = soup.find('a')
# v = tag.has_attr('id')
# print(v)

13. get_text,获取标签内部文本内容

1
2
3
# tag = soup.find('a')
# v = tag.get_text
# print(v)

14. index,检查标签在某标签中的索引位置

1
2
3
4
5
6
7
# tag = soup.find('body')
# v = tag.index(tag.find('div'))
# print(v)
 
# tag = soup.find('body')
# for i,v in enumerate(tag):
# print(i,v)

15. is_empty_element,是否是空标签(是否可以是空)或者自闭合标签,

     判断是否是如下标签:'br' , 'hr', 'input', 'img', 'meta','spacer', 'link', 'frame', 'base'

1
2
3
# tag = soup.find('br')
# v = tag.is_empty_element
# print(v)

16. 当前的关联标签

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# soup.next
# soup.next_element
# soup.next_elements
# soup.next_sibling
# soup.next_siblings
 
#
# tag.previous
# tag.previous_element
# tag.previous_elements
# tag.previous_sibling
# tag.previous_siblings
 
#
# tag.parent
# tag.parents

17. 查找某标签的关联标签

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# tag.find_next(...)
# tag.find_all_next(...)
# tag.find_next_sibling(...)
# tag.find_next_siblings(...)
 
# tag.find_previous(...)
# tag.find_all_previous(...)
# tag.find_previous_sibling(...)
# tag.find_previous_siblings(...)
 
# tag.find_parent(...)
# tag.find_parents(...)
 
# 参数同find_all

18. select,select_one, CSS选择器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
soup.select("title")
 
soup.select("p nth-of-type(3)")
 
soup.select("body a")
 
soup.select("html head title")
 
tag = soup.select("span,a")
 
soup.select("head > title")
 
soup.select("p > a")
 
soup.select("p > a:nth-of-type(2)")
 
soup.select("p > #link1")
 
soup.select("body > a")
 
soup.select("#link1 ~ .sister")
 
soup.select("#link1 + .sister")
 
soup.select(".sister")
 
soup.select("[class~=sister]")
 
soup.select("#link1")
 
soup.select("a#link2")
 
soup.select('a[href]')
 
soup.select('a[href="http://example.com/elsie"]')
 
soup.select('a[href^="http://example.com/"]')
 
soup.select('a[href$="tillie"]')
 
soup.select('a[href*=".com/el"]')
 
 
from bs4.element import Tag
 
def default_candidate_generator(tag):
    for child in tag.descendants:
        if not isinstance(child, Tag):
            continue
        if not child.has_attr('href'):
            continue
        yield child
 
tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator)
print(type(tags), tags)
 
from bs4.element import Tag
def default_candidate_generator(tag):
    for child in tag.descendants:
        if not isinstance(child, Tag):
            continue
        if not child.has_attr('href'):
            continue
        yield child
 
tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator, limit=1)
print(type(tags), tags)

19. 标签的内容

1
2
3
4
5
6
7
8
9
10
11
12
13
# tag = soup.find('span')
# print(tag.string)          # 获取
# tag.string = 'new content' # 设置
# print(soup)
 
# tag = soup.find('body')
# print(tag.string)
# tag.string = 'xxx'
# print(soup)
 
# tag = soup.find('body')
# v = tag.stripped_strings  # 递归内部获取所有标签的文本
# print(v)

20.append在当前标签内部追加一个标签

1
2
3
4
5
6
7
8
9
10
# tag = soup.find('body')
# tag.append(soup.find('a'))
# print(soup)
#
# from bs4.element import Tag
# obj = Tag(name='i',attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('body')
# tag.append(obj)
# print(soup)

21.insert在当前标签内部指定位置插入一个标签

1
2
3
4
5
6
# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('body')
# tag.insert(2, obj)
# print(soup)

22. insert_after,insert_before 在当前标签后面或前面插入

1
2
3
4
5
6
7
# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('body')
# # tag.insert_before(obj)
# tag.insert_after(obj)
# print(soup)

23. replace_with 在当前标签替换为指定标签

1
2
3
4
5
6
# from bs4.element import Tag
# obj = Tag(name='i', attrs={'id': 'it'})
# obj.string = '我是一个新来的'
# tag = soup.find('div')
# tag.replace_with(obj)
# print(soup)

24. 创建标签之间的关系

1
2
3
4
# tag = soup.find('div')
# a = soup.find('a')
# tag.setup(previous_sibling=a)
# print(tag.previous_sibling)

25. wrap,将指定标签把当前标签包裹起来

1
2
3
4
5
6
7
8
9
10
11
# from bs4.element import Tag
# obj1 = Tag(name='div', attrs={'id': 'it'})
# obj1.string = '我是一个新来的'
#
# tag = soup.find('a')
# v = tag.wrap(obj1)
# print(soup)
 
# tag = soup.find('a')
# v = tag.wrap(soup.find('p'))
# print(soup)

26. unwrap,去掉当前标签,将保留其包裹的标签

1
2
3
# tag = soup.find('a')
# v = tag.unwrap()
# print(soup)

更多参数官方:http://beautifulsoup.readthedocs.io/zh_CN/v4.4.0/

 

五、示例

把下面代码,加入到代码中,可以下载网站源码到本地分析

with open('weixin.html','wb') as f:
    f.write(wx_login_page.content)

1、爬取汽车之家新闻频道页面里面的图片

#!/usr/bin/env python
# -*- coding:utf-8 -*- 
# Author: nulige

import requests
from bs4 import BeautifulSoup

response = requests.get(
    url='http://www.autohome.com.cn/news/'
)

#解决爬虫乱码问题
response.encoding = response.apparent_encoding  

# 生成Soup对象,
soup = BeautifulSoup(response.text, features='html.parser')


# find查找第一个符合条件的对象
target = soup.find(id='auto-channel-lazyload-article')

#find_all查找所有符合的对象,查找出来的值在列表中
li_list = target.find_all('li')

#循环拿到具体每个对象
for i in li_list:
    a = i.find('a')

    if a:
        print(a.attrs.get('href'))   #    # .attrs查找到属性
        txt = a.find('h3').text  # 是对象
        img_url = a.find('img').attrs.get('src')
        print(img_url)
        # 再发一个请求
        img_response = requests.get(url=img_url)
        import uuid
        file_name = str(uuid.uuid4()) + '.jpg'
        with open(file_name,'wb') as f:
            f.write(img_response.content)备注: # 找到第一个a标签
  tag1 = soup.find(name='a')
 
  # 找到所有的a标签
  tag2 = soup.find_all(name='a')
 
  # 找到id=link2的标签
  tag3 = soup.select('#link2')

2、自动登陆抽屉网

#!/usr/bin/env python
# -*- coding: utf8 -*-
# __Author: "Skiler Hao"
# date: 2017/5/10 11:06
import requests
from bs4 import BeautifulSoup

# 第一次请求
first_request_response = requests.get(
    url = 'http://dig.chouti.com/',
)
# 获取第一次登录获取的cookie内容
firstget_cookie_dict = first_request_response.cookies.get_dict()


# 登录POST请求
post_dict = {
    'phone': '8618811*****', #86+手机号码
    'password': '******',    #密码
    'oneMonth': 1
}
# 发送请求,携带cookie和数据
login_response = requests.post(
    url = 'http://dig.chouti.com/login',
    data = post_dict,
    cookies= firstget_cookie_dict
)


# 点赞请求
dianzan_response = requests.post(
    url = 'http://dig.chouti.com/link/vote?linksId=11832246',
    cookies= firstget_cookie_dict
)
print(dianzan_response.text)


# 取消点赞
cancel_dianzan_response = requests.post(
    url = 'http://dig.chouti.com/vote/cancel/vote.do',
    cookies= firstget_cookie_dict,
    data={'linksId':11832246}
)
print(cancel_dianzan_response.text)


# 获取个人信息
get_person_info_resonse = requests.get(
    url = 'http://dig.chouti.com/profile',
    cookies= firstget_cookie_dict,
)
# 按照某种encoding方式编码
get_person_info_resonse.encoding = get_person_info_resonse.apparent_encoding
# 将其内容放入BS中进行解析
person_info_site = BeautifulSoup(get_person_info_resonse.text,features='html.parser')
# 找到之后可以做任何处理,获取配置中的nickname
nickname_tag = person_info_site.find(id='nick')
nickname = person_info_site.find(id='nick').attrs.get('value')
print('昵称:',nickname)

# 更新自己在抽屉上的个人信息
personal_info = {
    'jid': 'cdu_49017916793',
    'nick': '努力哥',
    'imgUrl': 'http://img2.chouti.com/CHOUTI_90A38B32473A49B7B26A49F46B34268C_W585H359=C60x60.png',
# http://img2.chouti.com/CHOUTI_BAE7F736FE7B48E49D1CEE459020F3B0_W390H390=48x48.jpg
    'sex': True,
    'proveName': '北京',
    'cityName': '澳门',
    'sign': '黑hi呃呃哈发到付'
}
update_person_info_resonse = requests.post(
    url = 'http://dig.chouti.com/profile/update',
    cookies= firstget_cookie_dict,
    data=personal_info
)
print(update_person_info_resonse.text)

#########################Session方式登录抽屉#########################

session = requests.Session()
# 先登陆一下抽屉网
i1 = session.get(
    url='http://dig.chouti.com/'
)
# 模拟抽屉登录
login_post_dict = {
    'phone': '86188116*****', #86+手机号码
    'password': '******',  #密码
    'oneMonth': 1
}
i2 = session.post(
    url='http://dig.chouti.com/login',
    data=login_post_dict,
)

 3、自动登陆GitHub

#!/usr/bin/env python
# -*- coding: utf8 -*-
# date: 2017/5/10 16:32

import requests
from bs4 import BeautifulSoup
# GitHub是基于authenticity_token,具有预防csrf_token的功能

# 首先访问页面,获取页面上的authenticity_token
i1 = requests.get('https://github.com/login')
# print(i1.content)
login_page_res = BeautifulSoup(i1.content,features='lxml')
authenticity_token = login_page_res.find(name='input',attrs={'name':'authenticity_token'}).attrs.get('value')
cookies1 = i1.cookies.get_dict()

# print(authenticity_token)
form_data = {
    'commit': 'Sign in',
    'utf8': '✓',
    'authenticity_token': authenticity_token,
    'login': '*****',
    'password': '******',
}

# 将数据封装在post请求中进行登录,而且要加上cookie
login_res = requests.post(
    url='https://github.com/session',
    data=form_data,
    cookies=cookies1
)
# print(login_res.text)
# 拿到页面中的自己的项目列表
login_page_res = BeautifulSoup(login_res.content,features='lxml')
list_info = login_page_res.select("span .repo")
for i in list_info:
    print(i.text)
cookies1 = i1.cookies.get_dict()

4、自动登录cnblog

博客园站用了一个rsa算法的加密模块,所以安装加密模块。才能验证登录。

pip3 install rsa

代码:

#!/usr/bin/env python
# -*- coding: utf8 -*-
# date: 2017/5/11 10:51
import re
import json
import base64
import rsa
import requests
from bs4 import BeautifulSoup

# 负责模仿前端js模块对账号和密码加密
def js_enrypt(text):
    # 先从博客园拿到public key
    public_key = 'MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCp0wHYbg/NOPO3nzMD3dndwS0MccuMeXCHgVlGOoYyFwLdS24Im2e7YyhB0wrUsyYf0/nhzCzBK8ZC9eCWqd0aHbdgOQT6CuFQBMjbyGYvlVYU2ZP7kG9Ft6YV6oc9ambuO7nPZh+bvXH0zDKfi02prknrScAKC0XhadTHT3Al0QIDAQAB'

    # 将拿到的一串字符,转换成64进制
    der = base64.standard_b64decode(public_key)

    # 再将其转换成数字,作为公钥加载
    pk = rsa.PublicKey.load_pkcs1_openssl_der(der)

    # 运用公钥对传进来的文字进行加密
    v1 = rsa.encrypt(bytes(text,'utf8'),pk)

    # 对加密后的内容进行解码
    value = base64.encodebytes(v1).replace(b'\n',b'')

    value = value.decode('utf8')

    # 将其返回
    return value

session = requests.Session()

# 写个错误的用户名和密码,提交一下。就找到提交数据
post_data = {
    'input1': js_enrypt('******'),
    'input2': js_enrypt('******'),
    'remember': True
}

# 发送一次请求,获取ajax发送post时要发送的VerificationToken,需要将其放在请求头部
login_page = session.get(
    url='https://passport.cnblogs.com/user/signin',
)
VerificationToken = re.compile("'VerificationToken': '(.*)'")
v = re.search(VerificationToken,login_page.text)
VerificationToken = v.group(1)

# 发送请求,注意将数据json序列化,因为Accept:application/json
login_post_res = session.post(
    url='https://passport.cnblogs.com/user/signin',
    data=json.dumps(post_data),
    headers={
        'VerificationToken': VerificationToken,
        'X-Requested-With': 'XMLHttpRequest',
        'Content-Type': 'application/json; charset=UTF-8'
    }
)

# 登录账号设置页
setting_page = session.get(
    url='https://home.cnblogs.com/set/account/',
)

soup = BeautifulSoup(setting_page.content,features='lxml')
name = soup.select_one('#loginName_display_block div').get_text().strip()
print('你的账号名为:',name)

5、自动登录知乎

#!/usr/bin/env python
# -*- coding: utf8 -*-

import requests
from bs4 import BeautifulSoup

session = requests.Session()

# 知乎会查看你的是否有用户客户端信息,没有不会让爬的
signin_page = session.get(
    url='https://www.zhihu.com/#signin',
    headers={
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
    }
)

# 拿到页面的_xrf为了防止csrf攻击,post数据的时候需要提供
signin_page_tag = BeautifulSoup(signin_page.content,features='lxml')
xsrf_code = signin_page_tag.find('input',attrs={'name':'_xsrf'}).attrs.get('value')

# 从知乎服务器获取验证码照片,发送请求POST,发现需要传入以下三个参数
# r:1494416****
# type:login
# lang:cn
import time
current_time = time.time()
yanzhengma = session.get(
    url='https://www.zhihu.com/captcha.gif',
    params={
        'r': current_time,
        'type': 'login',
        # 'lang': 'en' # 使用不同的语言,cn最为复杂,不加的话,最容易识别,en为立体的英文也不好识别
    },
    headers={
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
    }
)

# 将从服务器收到的验证码写入文件,可以查看啦
with open('zhihu.gif', 'wb') as f:
    f.write(yanzhengma.content)

captcha = input("请打开照片查看验证码:")
form_data = {
    '_xsrf': xsrf_code,
    'password': '********',
    'captcha': captcha,

    # 'captcha': '{"img_size": [200, 44], "input_points": [[40.2, 34.2], [156.2, 28.2], [138.2, 24.2]]}',
    # 'captcha_type': 'cn',  # 如果为中文的验证码比较复杂

    'phone_num': '***********',  #填手机号码登录
    # 'email':"sddasd@123.com"  # 邮箱登录的方式
}

login_response = session.post(
    url='https://www.zhihu.com/login/phone_num', #前端会根据你的数据类型选择用邮箱或者手机号码登录
    # url='https://www.zhihu.com/login/phone_num'
    data=form_data,
    headers = {
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
    }
)
index_page = session.get(
    url='https://www.zhihu.com/',
    headers={
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.98 Safari/537.36',
    }
)
index_page_tag = BeautifulSoup(index_page.content,features='lxml')
print(index_page_tag)

运行程序后,输入验证码。登录成功后,搜索用户名称,能找到我多个相同的用户名称,就说明登录成功。

 

 

 

 

 

 

 

 

 

    

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!