计算几何
二维几何:
点与向量
const double eps=1e-10; const double PI=acos(-1.0); struct Point{ double x,y; Point(double x=0,double y=0):x(x),y(y){} }; typedef Point Vector; Vector operator -(Point a,Point b){ return Vector(a.x-b.x,a.y-b.y); } Vector operator +(Point a,Point b){ return Vector(a.x+b.x,a.y+b.y); } Vector operator *(Vector a,double p){ return Vector(a.x*p,a.y*p); } Vector operator /(Vector a,double p){ return Vector(a.x/p,a.y/p); } bool operator <(const Point& a,const Point& b){ return a.x<b.x||(a.x==b.x&&a.y<b.y);//在有精度需求,比如使用lower_bound的时候,加上dcmp() } int dcmp(double x){ if(fabs(x)<eps)return 0; if(x<0)return -1; return 1; } bool operator ==(const Point& a,const Point& b){ return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; } double Dot(Vector a,Vector b){ return a.x*b.x+a.y*b.y; }//点积 double Cross(Vector a,Vector b){ return a.x*b.y-a.y*b.x; }//叉积 double Length(Vector a){ return sqrt(Dot(a,a)); }//长度 //返回逆时针旋转90度的单位法向量; Vector Normal(Vector a){ double l=Length(a); return Vector(-a.y/l,a.x/l); } //返回向量夹角,无方向 double Angle(Vector a,Vector b){ return acos(Dot(a,b)/Length(a)/Length(b)); } //逆时针旋转向量 Vector Rotate(Vector a,double rad){ return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); } //求p+v*t与q+w*t的交点,使用时确保Cross(v,w)不等于0 Point GetlineIntersection(Point p,Vector v,Point q,Vector w){ Vector u=p-q; double t=Cross(w,u)/Cross(v,w); return p+v*t; } //求p到直线ab的距离 double DistanceToline(Point p,Point a,Point b){ Vector v1=p-a,v2=b-a; return fabs(Cross(v1,v2)/Length(v2)); } //求p到线段ab的距离 double DistanceToSegment(Point p,Point a,Point b){ if(a==b)return Length(p-a); Vector v1=b-a,v2=p-a,v3=p-b; if(dcmp(Dot(v1,v2)<0))return Length(p-a); else if(dcmp(Dot(v1,v3))>0)return Length(p-b); else return fabs(Cross(v1,v2)/Length(v1)); } //线段a1a2与线段b1b2规范相交返回真 bool SegmenProperIntersection(Point a1,Point a2,Point b1,Point b2){ double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1); double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0; } //点p在线段a1a2上返回真 bool OnSegment(Point p,Point a1,Point a2){ return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0; } //点p在ab上的投影 Point GetLineProjection(Point P,Point A,Point B) { Vector v=B-A; return A+v*(Dot(v,P-A)/Dot(v,v)); } //与 x 轴的夹角,取值范围为 (-π,π] double angle(Vector v){ return atan2(v.y,v.x); } //求线段a1,a2到线段b1,b2的最短距离 double disSegmenttoSegment(Point a1,Point a2,Point b1,Point b2) { double ans=DistanceToSegment(a1,b1,b2); ans=min(ans,DistanceToSegment(a2,b1,b2)); ans=min(ans,DistanceToSegment(b1,a1,a2)); ans=min(ans,DistanceToSegment(b2,a1,a2)); return ans; }
线
struct Line{ Point p;//点 Vector v;//向量 double ang; Line(){} Line(Point p,Vector v):p(p),v(v){ang=atan2(v.y,v.x);} Point point(double t){return p+v*t;} bool operator <(const Line& L)const{ return ang<L.ang; } }; //点在直线的左边 bool OnLeft(Line l,Point p) { return Cross(l.v,p-l.p)>0; } //两直线交点 Point GetIntersection(Line a,Line b) { Vector u=a.p-b.p; double t=Cross(b.v,u)/Cross(a.v,b.v); return a.p+a.v*t; }
多边形
typedef vector<Point> Polygon; //多边形的有向面积,逆时针为正 double PolygonArea(Polygon po) { int n = po.size(); double area = 0.0; for(int i = 1; i < n-1; i++) { area += Cross(po[i]-po[0], po[i+1]-po[0]); } return area * 0.5; } //点是否在多边形内 int isPointInPolygon(Point p,Point poly[],int n) { int wn=0; for(int i=0;i<n;i++){ if(poly[i]==p||poly[(i+1)%n]==p||OnSegment(p,poly[i],poly[(i+1)%n]))return -1; int k=dcmp(Cross(poly[(i+1)%n]-poly[i],p-poly[i])); int d1=dcmp(poly[i].y-p.y); int d2=dcmp(poly[(i+1)%n].y-p.y); if(k>0&&d1<=0&&d2>0) wn++; if(k<0&&d2<=0&&d1>0) wn--; } if(wn!=0)return 1;//内部 return 0;//外部 } //求凸包,ch为返回凸包,m为凸包内点的数目,<=不允许点在边上, int ConvecHull(Point* p,int n,Point* ch) { sort(p,p+n); int m=0; for(int i=0;i<n;i++){ while(m>1&&dcmp(Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0))m--;//注意<=与<的区别 ch[m++]=p[i]; } int k=m; for(int i=n-2;i>=0;i--){ while(m>k&&dcmp(Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0))m--;//注意<=与<的区别 ch[m++]=p[i]; } if(n>1)m--; return m; }
圆
struct Circle{ Point c; double r; Circle(){}; Circle(Point c,double r=0):c(c),r(r){} Point point(double a){ return Point(c.x+cos(a)*r,c.y+sin(a)*r); } }; //求圆与直线的交点,t1,t2为(at+b)^2+(ct+d)^2=r^2的解,交点放入sol int getLineCircleIntersection(Line L,Circle C,double& t1,double& t2,vector<Point>& sol) { double a=L.v.x,b=L.p.x-C.c.x,c=L.v.y,d=L.p.y-C.c.y; double e=a*a+c*c,f=2*(a*b+c*d),g=b*b+d*d-C.r*C.r; double delta=f*f-4*e*g; if(dcmp(delta)<0)return 0; if(dcmp(delta)==0){ t1=t2=-f/(2*e); sol.push_back(L.point(t1)); return 1; } t1=(-f-sqrt(delta))/(2*e); sol.push_back(L.point(t1)); t2=(-f+sqrt(delta))/(2*e); sol.push_back(L.point(t2)); return 2; } //求圆与圆的交点,交点放入sol int getCircleCircleIntersection(Circle C1,Circle C2,vector<Point>& sol) { double d=Length(C1.c-C2.c); if(dcmp(d)==0){ if(dcmp(C1.r-C2.r)==0)return -1;//两圆重合 return 0; } if(dcmp(C1.r+C2.r-d)<0)return 0; if(dcmp(fabs(C1.r-C2.r)-d)>0)return 0; double a=angle(C2.c-C1.c);//直线c1c2 double da=acos((C1.r*C1.r+d*d-C2.r*C2.r)/(2*C1.r*d));//c1c2到c1p1的角 Point p1=C1.point(a-da),p2=C1.point(a+da); sol.push_back(p1); if(p1==p2)return 1; sol.push_back(p2); return 2; } //求直线与圆的切线 int getTangents(Point p,Circle C,Vector* v){ Vector u=C.c-p; double dist=Length(u); if(dcmp(dist-C.r)<0)return 0; else if(dcmp(dist-C.r)==0){ v[0]=Rotate(u,PI/2); return 1; } else { double ang=asin(C.r/dist); v[0]=Rotate(u,-ang); v[1]=Rotate(u,+ang); return 2; } }
半平面交
int HalfplaneIntersection(Line* L,int n,Point* poly) { sort(L,L+n); int first,last; Point *p=new Point[n];//会在函数内开大容量数组,请在使用时注意开成全局!!!!! Line *q=new Line[n];//会在函数内开大容量数组,请在使用时注意开成全局!!!!! q[first=last=0]=L[0]; for(int i=1;i<n;i++){ while(first<last&&!OnLeft(L[i],p[last-1]))last--; while(first<last&&!OnLeft(L[i],p[first]))first++; q[++last]=L[i]; if(fabs(Cross(q[last].v,q[last-1].v))<eps){ last--; if(OnLeft(q[last],L[i].p))q[last]=L[i]; } if(first<last)p[last-1]=GetIntersection(q[last-1],q[last]); } while(first<last&&!OnLeft(q[first],p[last-1]))last--; if(last-first<=1)return 0; p[last]=GetIntersection(q[last],q[first]); int m=0; for(int i=first;i<=last;i++)poly[m++]=p[i]; return m; }//会在函数内开大容量数组,请在使用时注意开成全局
平面直线图(PSGL)
struct Edge { int from, to; // 起点,终点,左边的面编号 double ang; Edge(int f,int t,double a):from(f),to(t),ang(a) {} }; // 平面直线图(PSGL)实现 struct PSLG { int n, m, face_cnt; double x[maxn], y[maxn]; vector<Edge> edges; vector<int> G[maxn]; int vis[maxn*2]; // 每条边是否已经访问过 int left[maxn*2]; // 左面的编号(该边在哪个面内) int prev[maxn*2]; // 相同起点的上一条边(即顺时针旋转碰到的下一条边)的编号 vector<Polygon> faces; double area[maxn]; // 每个polygon的面积 void init(int n) { this->n = n; for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); faces.clear(); } // 有向线段from->to的极角 double getAngle(int from, int to) { return atan2(y[to]-y[from], x[to]-x[from]); } void AddEdge(int from, int to) { edges.push_back((Edge){from, to, getAngle(from, to)}); edges.push_back((Edge){to, from, getAngle(to, from)}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } // 找出faces并计算面积 void Build() { for(int u = 0; u < n; u++) { // 给从u出发的各条边按极角排序 int d = G[u].size(); for(int i = 0; i < d; i++) for(int j = i+1; j < d; j++) // 这里偷个懒,假设从每个点出发的线段不会太多 if(edges[G[u][i]].ang > edges[G[u][j]].ang) swap(G[u][i], G[u][j]); for(int i = 0; i < d; i++) prev[G[u][(i+1)%d]] = G[u][i]; //u点出发的第i条边顺时针转的第一条边是prev[i] } memset(vis, 0, sizeof(vis)); face_cnt = 0; for(int u = 0; u < n; u++) for(int i = 0; i < G[u].size(); i++) { int e = G[u][i]; //逆时针转的第i条边 if(!vis[e]) { // 逆时针找圈 face_cnt++; Polygon poly; for(;;) { vis[e] = 1; left[e] = face_cnt; int from = edges[e].from; poly.push_back(Point(x[from], y[from])); //cout<<x[from]<<" "<<y[from]<<" "; e = prev[e^1]; //反向边顺时针第一条 if(e == G[u][i]) break; //回到原点 assert(vis[e] == 0); } //cout<<endl; faces.push_back(poly); } } for(int i = 0; i < faces.size(); i++) { area[i] = PolygonArea(faces[i]); } } };
旋转卡壳
//向量(b-a)与向量(c-a)的叉积,相当于三角形abc的有向面积的2倍 double cross(Point a,Point b,Point c) { return Cross(b-a,c-a); } //求凸包内最远点 long long getmaxdistance(Point a[],int n) { int j=2; double ans=0; a[n]=a[0];//方便写下一个点,避免取模 for(int i=0;i<n;i++){ while(fabs(cross(a[i],a[i+1],a[j+1]))>fabs(cross(a[i],a[i+1],a[j])))j=(j+1)%n; //通过比较面积大小,比较到直线的距离 ans=max(ans,Length2(a[j]-a[i])); } return ans; } //求2个凸包间的最短距离 double getmindistance(Point p1[],Point p2[],int n1,int n2) { int i=0,j=0; for(int k=0;k<n1;k++){ if(p1[k].y<p1[i].y)i=k;//找出p1中的y最小值的点 } for(int k=0;k<n2;k++){ if(p2[k].y>p2[j].y)j=k;//找出p2中的y最大值的点 } p1[n1]=p1[0]; p2[n2]=p2[0]; double ans=99999999999; for(int k=0;k<n1;k++){ //循环n1次,相当于求p1中每一条边与p2的最近距离 while((cross(p1[i],p1[i+1],p2[j+1])-cross(p1[i],p1[i+1],p2[j]))>eps) j=(j+1)%n2; ans=min(ans,disSegmenttoSegment(p1[i],p1[i+1],p2[j],p2[j+1]));//求线段间的最短距离 i=(i+1)%n1; } return ans; } //求凸包的内4个点组成的最大四边形面积 double solve(Point a[],int n) { a[n]=a[0]; int p1,p2; double ans=0; for(int i=0;i<n;i++){ p1=(i+0)%n; p2=(i+1)%n; for(int j=i+1;j<n;j++){ while(cross(a[i],a[j],a[p1+1])<cross(a[i],a[j],a[p1]))p1=(p1+1)%n; while(cross(a[i],a[j],a[p2+1])>cross(a[i],a[j],a[p2]))p2=(p2+1)%n; ans=max(ans,cross(a[i],a[j],a[p2])-cross(a[i],a[j],a[p1])); } } return ans; }
三维几何
基础点面
struct Point3{ double x,y,z; Point3(double x=0,double y=0,double z=0):x(x),y(y),z(z){} }; typedef Point3 Vector3; Vector3 operator +(Vector3 A,Vector3 B){ return Vector3(A.x+B.x,A.y+B.y,A.z+B.z); } Vector3 operator -(Vector3 A,Vector3 B){ return Vector3(A.x-B.x,A.y-B.y,A.z-B.z); } Vector3 operator *(Vector3 A,double p){ return Vector3(A.x*p,A.y*p,A.z*p); } Vector3 operator /(Vector3 A,double p){ return Vector3(A.x/p,A.y/p,A.z/p); } int dcmp(double a){ if(fabs(a)<eps)return 0; else if(a>0)return 1; return -1; } bool operator ==(Vector3 a,Vector3 b){ return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0&&dcmp(a.z-b.z)==0; } double Dot(Vector3 A,Vector3 B){ return A.x*B.x+A.y*B.y+A.z*B.z; } double Length(Vector3 A){ return sqrt(Dot(A,A)); } double Angle(Vector3 A,Vector3 B){ return acos(Dot(A,B/Length(A)/Length(B))); } //点p到平面p0-n的距离。n必须为单位向量 double DistancetoPlane(const Point3& p,const Point3& p0,const Vector3& n){ return fabs(Dot(p-p0,n)); } //点p在平面p0-n上的投影。n必须为单位向量 Point3 GetPlaneProjection(const Point3& p,const Point3& p0,const Vector3& n){ return p-n*Dot(p-p0,n); } //直线p1-p2到平面p0-n的交点。假设交点唯一存在 Point3 LinePlaneIntersection(Point3 p1,Point3 p2,Point3 p0,Vector3 n){ Vector3 v=p2-p1; double t=(Dot(n,p0-p1))/Dot(n,p2-p1); return p1+v*t; } Vector3 Cross(Vector3 A,Vector3 B){ return Vector3(A.y*B.z-A.z*B.y,A.z*B.x-A.x*B.z,A.x*B.y-A.y*B.x); } double Area2(Point3 A,Point3 B,Point3 C){ return Length(Cross(B-A,C-A)); } //点p在△p0p1p2中 bool PointInTri(Point3 p,Point3 p0,Point3 p1,Point3 p2){ double area1=Area2(p,p0,p1); double area2=Area2(p,p1,p2); double area3=Area2(p,p2,p0); return dcmp(area1+area2+area3-Area2(p0,p1,p2))==0; } //△p0p1p2是否和线段ab相交 bool TriSegIntersection(Point3 p0,Point3 p1,Point3 p2,Point3 a,Point3 b,Point3& p) { Vector3 n=Cross(p1-p0,p2-p0); if(dcmp(Dot(n,b-a))==0)return false; else { double t=Dot(n,p0-a)/Dot(n,b-a); if(dcmp(t)<0||dcmp(t-1)>0)return false; p=a+(b-a)*t; return PointInTri(p,p0,p1,p2); } } //点p到直线ab的距离 double DistancetoLine(Point3 p,Point3 a,Point3 b) { Vector3 v1=b-a,v2=p-a; return Length(Cross(v1,v2)/Length(v1)); } //点p到线段ab的距离 double DistanceToSegment(Point3 p,Point3 a,Point3 b){ if(a==b)return Length(p-a); Vector3 v1=b-a,v2=p-a,v3=p-b; if(dcmp(Dot(v1,v2)<0))return Length(v2); else if(dcmp(Dot(v1,v3))>0)return Length(v3); else return Length(Cross(v1,v2))/Length(v1); } //返回ab,ac,ad的混合积。它也等于四面体的有向体积的6倍 double Volume6(Point3 a,Point3 b,Point3 c,Point3 d) { return Dot(d-a,Cross(b-a,c-a)); }
凸包
struct Face{ int v[3]; Vector3 normal(Point3 *p)const{ return Cross(p[v[1]]-p[v[0]],p[v[2]]-p[v[0]]); } int cansee(Point3 *p,int i)const{ return Dot(p[i]-p[v[0]],normal(p))>0?1:0; } }; const int N=1e3; int vis[N][N]; //三维凸包,记得使用前扰动点,以避免特殊情况 vector<Face> CH3D(Point3 *p,int n) { vector<Face> cur; //记得提前扰动 cur.push_back((Face){{0,1,2}}); cur.push_back((Face){{2,1,0}}); for(int i=3;i<n;i++){ vector<Face> next; for(int j=0;j<cur.size();j++){ Face& f=cur[j]; int res=f.cansee(p,i); if(!res)next.push_back(f); for(int k=0;k<3;k++)vis[f.v[k]][f.v[(k+1)%3]]=res; } for(int j=0;j<cur.size();j++){ for(int k=0;k<3;k++){ int a=cur[j].v[k],b=cur[j].v[(k+1)%3]; if(vis[a][b]!=vis[b][a]&&vis[a][b]){ next.push_back((Face){{a,b,i}}); } } } cur=next; } return cur; } double rand01(){ return rand()/(double)RAND_MAX; } double randeps(){ return (rand01()-0.5)*eps; } Point3 add_noise(Point3 p) { return Point3(p.x+randeps(),p.y+randeps(),p.z+randeps()); }
来源:https://www.cnblogs.com/pot-a-to/p/11140086.html