中国剩余定理(CRT)
中国剩余定理出自中国的某本古书,似乎是孙子兵法?(雾
其中有这样一个问题:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?
即,对于这样一个方程组:
\[
\begin{cases}x\equiv a_1\pmod{m_1}\\x\equiv a_2\pmod{m_2}\\x\equiv a_3\pmod{m_3}\\\dots\\x\equiv a_i\pmod{m_i}\end{cases}
\]
我们已知所有\(a_i,m_i\),求可行解\(x\),可以证明的是,若所有\(m_i\)互质,那么该方程组有唯一解。
可以构造出一个解:如果有\(k\)个方程,设\(M=\prod_{i=1}^k m_i,n_i=\frac{M}{m_i}\),则有\(x=\sum_{i=1}^k a_in_in_i^{-1}\pmod{M}\)。
扩展中国剩余定理(EXCRT)
扩展中国剩余定理不要求\(m_i\)互质,其结论是由数学归纳法得出的,跟CRT实际上没太大关系。这种情况下,方程组的解是不唯一的。
首先考虑两个方程的情况。
假设我们有\(x\equiv a_1\pmod{m_1},x\equiv a_2\pmod{m_2}\),那么显然\(x+m_1*t_1=a_1,x+m_2*t_2=a_2\),其中\(t_i\)为未知数。得出\(a_1-a_2=m_1*t_1-m_2*t_2\),根据\(Bezout\)定理,若\(gcd(m_1,m_2)\mid (a_1-a_2)\),该方程有解。那么我们就可以求出两个方程的情况下的一个解了。
然后考虑多个方程。
假设前\(k-1\)个方程的解为\(x\),记\(m=lcm(m_1,m_2,m_3\cdots,m_{k-1})\),那么显然前\(k-1\)个方程的通解是\(x+i*m,i\in \mathbb{Z}\)。为什么要最小公倍数呢?显然最小公倍数中包含了前\(k-1\)个数中出现的所有因子,因此\(x\)加上任意倍的\(m\)对任意的\(m_i\)取模答案不变,所以其实把前\(k-1\)个\(m_i\)全部乘起来当作\(m\)也不是不可以。而对于第\(k\)个方程,我们既要使得解对前\(k-1\)个方程成立,因此我们取某前\(k-1\)个方程的某个通解,又要使解对第\(k\)个方程成立,因此我们要使\(x+i*m\equiv a_k\pmod{m_k}\)。
现在看到这个方程,\(x+i*m\equiv a_k\pmod{m_k}\),可以化为\(i*m\equiv a_k-x\pmod{m_k}\)我们要求解它,就是求解一个线性同余方程,可以用扩展欧几里得算法得出解。显然,假设前\(k\)个方程的解为\(x'\),那么\(x'=x+i*m\)。
于是我们对方程组进行\(k\)次扩展欧几里得,就可以得出前\(k\)个方程的解。
洛谷上板子取模比较神奇,贴一下代码:
#include<cstdio> #include<iostream> #include<cmath> #include<cstring> #include<ctime> #include<cstdlib> #include<algorithm> #include<queue> #include<set> #include<map> #define ll long long using namespace std; inline ll read() { ll f=1,x=0;char c=getchar(); while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();} return x*f; } inline ll mul(ll a,ll b,ll p) { ll ans=0; for(;b;b>>=1){ if(b&1) ans=(ans+a)%p; a=(a+a)%p; } return ans; } inline ll exgcd(ll a,ll b,ll &x,ll &y) { if(b==0){x=1,y=0;return a;} ll d=exgcd(b,a%b,x,y); ll z=x;x=y;y=z-y*(a/b); return d; } int n; int main() { n=read(); ll M,gcd,ans=0,x0,y0; M=read(),ans=read();//第一个方程的最小非负整数解就是它自己 for(register int i=2;i<=n;++i){ ll a,m; m=read(),a=read(); gcd=exgcd(M,m,x0,y0); ll k=m/gcd; x0=mul(x0,((a-ans%m+m)%m)/gcd,m);//至今不知道为什么可以取模 ans+=M*x0; M*=k; ans=(ans%M+M)%M; } printf("%lld",(ans%M+M)%M); return 0; }
来源:https://www.cnblogs.com/DarkValkyrie/p/11322446.html