R语言3.11 因子分析因子旋转

两盒软妹~` 提交于 2020-03-12 03:51:06

因子旋转

  • 目的
    寻找每个主因子的实际意义
    如果各主因子的典型代表变量不突出,就需要进行旋转
    使因子载荷矩阵中载荷的绝对值向0和1两个方向分化
  • 方法
    正交旋转Varimax(最大方差正交旋转)
    斜交旋转Promax
Fa2=factanal(X,3,rotation="varimax")
Fa2$loadings

在这里插入图片描述
因子得分计算方法:回归估计法(方差一致),Bartlett估计法

Fa1$scores(旋转前因子得分)
Fa2$scores(旋转后因子得分)
plot(Fa2$scores,asp=1)
abline(h=0,v=0,lty=3)
text(Fa2$scores,labels = rownames(X))
biplot(Fa2$scores,Fa2$loadings)
abline(h=0,v=0,lty=3)
Fa1$ranks(排名)

因子分析的基本步骤
1.确认数据是否适合作因子分析
一般用KMO与Bartlett’s进行检验
在这里插入图片描述
判断标准:KMO>0.9非常适合,0.8~0.9适合,0.7 ~ 0.8一般,0.6 ~0.7不太合适,0.5 ~0.6不合适,<0.5极不合适。
2.构造因子变量
3.旋转因子使其更具解释性
4.计算因子得分并做因子图
R语言因子分析过程
一、因子计算
1.是否适合做因子分析:KMO
2.计算因子分析的对象:factanal(极大似然),主因子估计基于主成分的谱分解计算
3.按方差贡献定因子数:>80%
4.获得因子载荷并解释:loadings5.varimax6.loadings 5.是否需进行因子旋转:'varimax' 二、因子评价 6.因子得分:scores
7.因子信息图:biplot
8.综合得分:加权得分
9.得分排序:$ranks

问题:自定义R语言程序包?
在这里插入图片描述

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!