spark-submit参数说明

拥有回忆 提交于 2020-02-28 00:26:37

spark-submit提交

 

! 注意 :提交命令写在shell脚本中,各个参数之间不能有注释,亲测报错

spark-submit可以提交到spark集群执行,也可以提交到hadoop的yarn集群执行

1.一个最简单的例子,部署 spark standalone 模式后,提交到本地执行。

./bin/spark-submit \
--master spark://localhost:7077 \
examples/src/main/python/pi.py

2.如果部署 hadoop,并且启动 yarn 后,spark 提交到 yarn 执行的例子如下。

  注意,spark 必须编译成支持 yarn 模式,编译 spark 的命令为:

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 1 \
--queue thequeue \
examples/target/scala-2.11/jars/spark-examples*.jar 10

 spark-submit 详细参数说明

参数名 参数说明
--master  master 的地址,提交任务到哪里执行,例如 spark://host:port,  yarn,  local
--deploy-mode  在本地 (client) 启动 driver 或在 cluster 上启动,默认是 client
--class  应用程序的主类,仅针对 java 或 scala 应用
--name  应用程序的名称
--jars  用逗号分隔的本地 jar 包,设置后,这些 jar 将包含在 driver 和 executor 的 classpath 下
--packages  包含在driver 和executor 的 classpath 中的 jar 的 maven 坐标
--exclude-packages  为了避免冲突 而指定不包含的 package
--repositories  远程 repository
--conf PROP=VALUE

 指定 spark 配置属性的值,

 例如 -conf spark.executor.extraJavaOptions="-XX:MaxPermSize=256m"

--properties-file  加载的配置文件,默认为 conf/spark-defaults.conf
--driver-memory  Driver内存,默认 1G
--driver-java-options  传给 driver 的额外的 Java 选项
--driver-library-path  传给 driver 的额外的库路径
--driver-class-path  传给 driver 的额外的类路径
--driver-cores  Driver 的核数,默认是1。在 yarn 或者 standalone 下使用
--executor-memory  每个 executor 的内存,默认是1G
--total-executor-cores  所有 executor 总共的核数。仅仅在 mesos 或者 standalone 下使用
--num-executors  启动的 executor 数量。默认为2。在 yarn 下使用
--executor-core  每个 executor 的核数。在yarn或者standalone下使用
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!