深度学习(五)————卷积神经网络基础、leNet、卷积神经网络进阶

那年仲夏 提交于 2020-02-19 23:16:35

目录

卷积神经网络基础

二维互相关运算

填充

步幅

多输入通道和多输出通道¶

卷积层与全连接层的对比

池化

LeNet 模型

深度卷积神经网络(AlexNet)

AlexNet

使用重复元素的网络(VGG)¶

⽹络中的⽹络(NiN)

GoogLeNet


卷积神经网络基础

本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义

我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。

二维互相关运算

二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。

填充

填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。

步幅

在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。

多输入通道和多输出通道

之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是hh和ww(像素),那么它可以表示为一个3×h×w3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。

多输入通道

卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。

多输出通道

卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为cici和coco,高和宽分别为khkh和kwkw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kwci×kh×kw的核数组,将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kwco×ci×kh×kw。

对于输出通道的卷积核,我们提供这样一种理解,一个ci×kh×kwci×kh×kw的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的ci×kh×kwci×kh×kw的核数组,不同的核数组提取的是不同的特征。

卷积层与全连接层的对比

二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:

一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。

二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为(ci,co,h,w)(ci,co,h,w)的卷积核的参数量是ci×co×h×wci×co×h×w,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是(c1,h1,w1)(c1,h1,w1)和(c2,h2,w2)(c2,h2,w2),如果要用全连接层进行连接,参数数量就是c1×c2×h1×w1×h2×w2c1×c2×h1×w1×h2×w2。使用卷积层可以以较少的参数数量来处理更大的图像。

池化

二维池化层

池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为2×22×2的最大池化(还有平均池化层)。

LeNet 模型

LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。

总结:

卷积神经网络就是含卷积层的网络。 LeNet交替使用卷积层和最大池化层后接全连接层来进行图像分类.

深度卷积神经网络(AlexNet)

LeNet: 在大的真实数据集上的表现并不尽如⼈意。
1.神经网络计算复杂。
2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。

机器学习的特征提取:手工定义的特征提取函数
神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。

神经网络发展的限制:数据、硬件 

AlexNet

首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。
特征:

  1. 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  2. 将sigmoid激活函数改成了更加简单的ReLU激活函数。
  3. 用Dropout来控制全连接层的模型复杂度。
  4. 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

 

使用重复元素的网络(VGG)

VGG:通过重复使⽤简单的基础块来构建深度模型。
Block:数个相同的填充为1、窗口形状为3×3的卷积层,接上一个步幅为2、窗口形状为2×2的最大池化层。
卷积层保持输入的高和宽不变,而池化层则对其减半。

⽹络中的⽹络(NiN)

LeNet、AlexNet和VGG:先以由卷积层构成的模块充分抽取 空间特征,再以由全连接层构成的模块来输出分类结果。
NiN:串联多个由卷积层和“全连接”层构成的小⽹络来构建⼀个深层⽹络。
⽤了输出通道数等于标签类别数的NiN块,然后使⽤全局平均池化层对每个通道中所有元素求平均并直接⽤于分类。

NiN重复使⽤由卷积层和代替全连接层的1×1卷积层构成的NiN块来构建深层⽹络。
NiN去除了容易造成过拟合的全连接输出层,而是将其替换成输出通道数等于标签类别数 的NiN块和全局平均池化层。
NiN的以上设计思想影响了后⾯⼀系列卷积神经⽹络的设计。

GoogLeNet

  1. 由Inception基础块组成。
  2. Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
  3. 可以⾃定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!