认识模块
什么是模块?
常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。
但其实import加载的模块分为四个通用类别:
1 使用python编写的代码(.py文件)
2 已被编译为共享库或DLL的C或C++扩展
3 包好一组模块的包
4 使用C编写并链接到python解释器的内置模块
为何要使用模块?
如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。
随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。
这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用,
常用模块
1.collections模块
在内置数据类型(dict, list, set, tuple) 的基础上, collections 模块还提供了几个额外的数据类型:namedtuple, deque, OrderedDict, defaultdict, Counter等.
1.namedtuple 生成可以使用名字来访问元素内容的tuple
2.deque 双端队列,可以快速的从另外一侧追加和取出对象
3.OrderedDict 有序字典
4.defaultdict 带有默认值的字典
5.Counter 计数器,主要用来计数
1.namedtuple
我们知道tuple可以表示不变集合, 例如, 一个点的二维坐标就可以表示成: p=(1,2)
但是,看到(1,2)时很难看出这个tuple是用来表示一个坐标的.
这时,namedtuple就派上了用场:
from collections import namedtuple # namedtuple('名称', [属性list]) Point = namedtuple('Point', ['x', 'y']) p = Point(1, 2) print(p.x, p.y) # 1 2
类似的, 如果要用坐标和半径表示一个圆,也可以用namedtuple定义:
# namedtuple('名称', [属性list]) Circle = namedtuple('Circle', ['x', 'y', 'z'])
2.deque
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低.
deque 是为了高效实现插入和删除操作的双向列表,适合用于队列和堆栈:
from collections import deque q = deque(['a', 'b', 'c']) print(q) # deque(['a', 'b', 'c']) q.append('x') # append 从后面插入元素 print(q) # deque(['a', 'b', 'c', 'x']) q.appendleft('y') # appendleft 从前面插入元素 print(q) # deque(['y', 'a', 'b', 'c', 'x']) print(q.pop()) # x pop 从后面删除元素并返回被删除元素 print(q) # deque(['y', 'a', 'b', 'c']) print(q.popleft()) # y popleft 从前面删除元素并返回被删除元素 print(q) # deque(['a', 'b', 'c']) q.insert(2, 'xin') # 在指定位置插入元素 print(q) # deque(['a', 'b', 'xin', 'c'])
deque除了实现了list的append() 和 pop() 及 insert()方法外, 还支持 appendleft() 和 popleft() ,这样就可以非常高效的添加和删除元素.
3.OrderedDict
使用dict时,Key是无序的.在对dict做迭代时,我们无法确定Key的顺序.
如果要保持Key的顺序,可以用OrderedDict:
from collections import OrderedDict # dict 的 Key 是无序的 d = dict([('a', 1), ('b', 2), ('c', 3)]) print(d) # {'a': 1, 'c': 3, 'b': 2} # OrderedDict 的 Key 是有序的 od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) print(od) # OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict的Key会按照插入的顺序排列, 不是Key本身排序:
from collections import OrderedDict od = OrderedDict() od['z'] = 1 od['y'] = 2 od['x'] = 3 print(od.keys()) # 按照插入的Key的顺序返回 # odict_keys(['z', 'y', 'x'])
4.defaultdict
有如下值集合 [11,22,33,44,55,66,77,88,99,90…], 将所有大于66的值保存至字典的第一个key的值中,将小于66的值保存至第二个key的值中.
即: {‘k1’: 大于66, ‘k2’: 小于66}
values = [11, 22, 33, 44, 55, 66, 77, 88, 99, 90] my_dict = {} for value in values: if value > 66: if my_dict.has_key('k1'): # has_key() 判断字典是否有指定key my_dict['k1'].append(value) else: my_dict['k1'] = [value] else: if my_dict.has_key('k2'): my_dict['k2'].append(value) else: my_dict['k2'] = [value]
from collections import defaultdict values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = defaultdict(list) # 指定字典的默认值为列表 for value in values: if value > 66: my_dict['k1'].append(value) else: my_dict['k2'].append(value)
使用dict时, 如果引用的Key 不存在,就会抛出 KeyError. 如果希望Key不存在时,返回一个默认值,就可以使用defaultdict:
5.Counter
Counter类的目的是用来跟踪值出现的次数. 它是一个无序的容器类型, 以字典的键值对形式存储,其中元素作为key,其计数作为value. 计数值可以使任意的Interger(包括0和负数). Counter类和其他语言的bags 或 multisets 很相似.
from collections import Counter c = Counter('abcdeabcdabcaba') print(c) # Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
2.时间模块(time)
和时间有关系的我们就要用到时间模块.在使用模块之前,应该首先导入这个模块.
# 常用方法 1. time.sleep(secs) # (线程)推迟指定的时间运行,单位为秒 2. time.time() # 获取当前时间戳
表示时间的三种方式
在Python中, 通常有这三种方式来表示时间:时间戳,元组(struct_time), 格式化的时间字符串.
(1)时间戳(timestamp): 通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量. 我们运行”type(time.time())”, 返回的是float类型.
(2)格式化的时间字符串(Format String): 例如’1999-12-06’
%y 两位数的年份表示(00-99) %Y 四位数的年份表示(000-9999) %m 月份(01-12) %d 天(0-31) %H 24小时制小时数(0-23) %I 12小时制小时数(01-12) %M 分钟数(00-59) %s 秒数(00-59) %a 本地简化星期名称 %A 本地完整星期名称 %b 本地简化的月份名称 %B 本地完整的月份名称 %c 本地相应的日期表示和时间表示 %j 年内的一天(001-366) %p 本地A.M.或P.M.的等价符 %U 一年中的星期数(00-53) 星期天为星期的开始 %w 星期(0-6),星期天为星期的开始 %W 一年中的星期数(00-53) 星期一为星期的开始 %x 本地相应的日期表示 %X 本地相应的时间表示 %Z 当前时区的名称 %% %号本身
(3)元组(struct_time): struct_time元组共有9个元素(年,月,日,时,分,秒,一年中第几周,一年中第几天,是否夏令时)
索引(Index) | 属性(Attribute) | 值(Values) |
---|---|---|
0 | tm_year(年) | 比如2011 |
1 | tm_mon(月) | 1 - 12 |
2 | tm_mday(日) | 1 - 31 |
3 | tm_hour(时) | 0 - 23 |
4 | tm_min(分) | 0 - 59 |
5 | tm_sec(秒) | 0 - 60 |
6 | tm_wday(weekday) | 0 - 6(0表示周一) |
7 | tm_yday(一年中的第几天) | 1 - 366 |
8 | tm_isdst(是否是夏令时) | 默认为0 |
首先,我们先导入time模块,来认识一下python中表示时间的几种格式:
# 导入时间模块 import time # 时间戳 tt = time.time() print(tt) # 1554174559.539599 # 时间字符串 tf1 = time.strftime('%Y-%m-%d %X') print(tf1) # 2019-04-02 11:09:19 tf2 = time.strftime('%Y-%m-%d %H-%M-%S') print(tf2) # 2019-04-02 11-09-19 # 时间元组:localtime将一个时间戳转换为当前时区的struct_time tl = time.localtime() print(tl) # time.struct_time(tm_year=2019, tm_mon=4, tm_mday=2, tm_hour=11, # tm_min=9, tm_sec=19, tm_wday=1, tm_yday=92, tm_isdst=0)
小结:时间戳是计算机能够识别的时间; 时间字符串是人能看懂的时间; 元组则是用来操作时间的
几种时间格式之间的转换
#### 时间戳(timestamp)---> 结构化时间(struct_time) ## 1. time.gmtime(时间戳) UTC时间,与英国伦敦当地时间一致 ## 2. time.localtime(时间戳) 当地时间.例如我们现在在北京,执行这个方法, # 与UTC时间相差8小时,UTC时间+8小时=北京时间 print(time.gmtime(1700000000)) # time.struct_time(tm_year=2023, tm_mon=11, tm_mday=14, tm_hour=22, # tm_min=13, tm_sec=20, tm_wday=1, tm_yday=318, tm_isdst=0) print(time.localtime(1700000000)) # time.struct_time(tm_year=2023, tm_mon=11, tm_mday=15, tm_hour=6, # tm_min=13, tm_sec=20, tm_wday=2, tm_yday=319, tm_isdst=0) #### 结构化时间(struct_time)--->时间戳(timestamp) ## time.mktime(struct_time) time_tuple = time.localtime(1700000000) print(time.mktime(time_tuple)) # 1700000000.0
#### 结构化时间(struct_time)--->字符串时间(Format String) ## time.strftiem('格式定义', '结构化时间') 结构化时间参数若不传,则显示当前时间 print(time.strftime('%Y-%m-%d %X')) # 2019-04-02 11:30:22 print(time.strftime('%Y=%m=%d', time.localtime(1700000000))) # 2023=11=15 #### 字符串时间(Format String)--->结构化时间(struct_time) ## time.strptime(时间字符串,字符串对应格式) print(time.strptime('2023=11=15', '%Y=%m=%d')) #time.struct_time(tm_year=2023, tm_mon=11, tm_mday=15, tm_hour=0, tm_min=0, # tm_sec=0, tm_wday=2, tm_yday=319, tm_isdst=-1) print(time.strptime('07/24/2017', '%m/%d/%Y')) # time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, # tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)
# 结构化时间 ---> %a %b %d %H:%M:%S %Y 串 # time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串 print(time.asctime(time.localtime(1700000000))) # Wed Nov 15 06:13:20 2023 print(time.asctime()) # Tue Apr 2 11:40:48 2019 # 时间戳 ---> %a %b %d %H:%M:%S %Y 串 # time.ctime(时间戳) 如果不传参数,直接返回当前时间的格式化串 print(time.ctime()) # Tue Apr 2 11:42:15 2019 print(time.ctime(1700000000)) # Wed Nov 15 06:13:20 2023
import time true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S')) time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S')) # time.strptime() 将字符串时间转换为结构化时间 # time.mktime() 将结构化时间转换为时间戳 dif_time=time_now-true_time struct_time=time.gmtime(dif_time) print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1, struct_time.tm_mday-1,struct_time.tm_hour, struct_time.tm_min,struct_time.tm_sec)) # 时间戳是从1970年1月1日零点开始的,所以计算时要减去相应的值
3.random模块
import random # 随机小数 random.random() # 大于0且小于1之间的小数 random.uniform(1, 3) # 大于1且小于3的小数 # 随机整数 random.randint(1, 5) # 大于等于1且小于等于5之间的整数 random.randrange(1, 10, 2) # 大于等于1且小于10之间的奇数 #随机返回 random.choice([1, '23', [4, 5]]) # 随机选择一个返回 random.sample([1, '23', [4, 5]], 2) # 随机选择多个返回,返回个数为函数的第二个参数 # 打乱列表排序 item = [1, 3, 5, 7, 9] random.shuffle(item)
练习:生成随机验证码
import random def v_code(): code = '' for i in range(6): num = random.randint(0, 9) alf = chr(random.randint(65, 90)) add = random.choice([num, alf]) code = ''.join([code, str(add)]) return code print(v_code())
4.os模块
os模块是与操作系统交互的一个接口
os.makedirs('dirname1/dirname2') 可生成多层递归目录 os.removedirs('dirname1') 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推 os.mkdir('dirname') 生成单级目录;相当于shell中mkdir dirname os.rmdir('dirname') 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印 os.remove() 删除一个文件 os.rename("oldname","newname") 重命名文件/目录 os.stat('path/filename') 获取文件/目录信息 os.system("bash command") 运行shell命令,直接显示 os.popen("bash command).read() 运行shell命令,获取执行结果 os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd os.path os.path.abspath(path) 返回path规范化的绝对路径 os.path.split(path) 将path分割成目录和文件名二元组返回 os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素 os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即os.path.split(path)的第二个元素 os.path.exists(path) 如果path存在,返回True;如果path不存在,返回False os.path.isabs(path) 如果path是绝对路径,返回True os.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回False os.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回False os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略 os.path.getatime(path) 返回path所指向的文件或者目录的最后访问时间 os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间 os.path.getsize(path) 返回path的大小
注意:os.stat(‘path/filename’) 获取文件/目录信息 的结构说明
stat 结构: st_mode: inode 保护模式 st_ino: inode 节点号。 st_dev: inode 驻留的设备。 st_nlink: inode 的链接数。 st_uid: 所有者的用户ID。 st_gid: 所有者的组ID。 st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。 st_atime: 上次访问的时间。 st_mtime: 最后一次修改的时间。 st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间(详细信息参见平台的文档)。
os模块的属性os.sep 输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/" os.linesep 输出当前平台使用的行终止符,win下为"\r\n",Linux下为"\n" os.pathsep 输出用于分割文件路径的字符串 win下为;,Linux下为: os.name 输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
5.sys模块
sys模块是与python解释器交互的一个接口
sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1) sys.version 获取Python解释程序的版本信息 sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值 sys.platform 返回操作系统平台名称
import sys try: sys.exit(1) except SystemExit as e: print(e)
6.序列化模块(json, pickle, shelve)
什么叫序列化------将原本的字典,列表等内容转换成一个字符串的过程就叫序列化
比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给? 现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。 但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。 你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢? 没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串, 但是你要怎么把一个字符串转换成字典呢? 聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。 eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。 BUT!强大的函数有代价。安全性是其最大的缺点。 想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。 而使用eval就要担这个风险。 所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)
序列化的目的
1. 以某种存储形式使自定义对象持久化
2. 将对象从一个地方传递到另一个地方
3. 使程序更具有维护性
json模块
json模块提供了四个功能:dumps, dump, loads, load
import json dic = {'k1':'v1','k2':'v2','k3':'v3'} str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串 print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"} #注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典 #注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示 print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}] str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型 print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}] list_dic2 = json.loads(str_dic) print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
import json f = open('json_file','w') dic = {'k1':'v1','k2':'v2','k3':'v3'} json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件 f.close() f = open('json_file') dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回 f.close() print(type(dic2),dic2)
import json f = open('file','w') json.dump({'国籍':'中国'},f) ret = json.dumps({'国籍':'中国'}) f.write(ret+'\n') json.dump({'国籍':'美国'},f,ensure_ascii=False) ret = json.dumps({'国籍':'美国'},ensure_ascii=False) f.write(ret+'\n') f.close()
Serialize obj to a JSON formatted str.(字符串表示的json对象) Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。) If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse). If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity). indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。 default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError. sort_keys:将数据根据keys的值进行排序。 To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.
import json data = {'username':['李华','二愣子'],'sex':'male','age':16} json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False) print(json_dic2)
pickle 模块 与json模块的用法基本相同
json 和 pickle 模块
都是用于序列化的两个模块
json, 用于字符串 和 python数据类型间进行转换
pickle, 用于python特有的类型 和 python的数据类型间进行转换
pickle模块提供了四个功能: dumps, dump(序列化, 存); loads(反序列化, 读),load(不仅可以序列化字典,列表…可以把python中任意的数据类型序列化)
import pickle dic = {'k1':'v1','k2':'v2','k3':'v3'} str_dic = pickle.dumps(dic) print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic) print(dic2) #字典 import time struct_time = time.localtime(1000000000) print(struct_time) f = open('pickle_file','wb') pickle.dump(struct_time,f) f.close() f = open('pickle_file','rb') struct_time2 = pickle.load(f) print(struct_time2.tm_year)
json是一种所有的语言都可以识别的数据结构.
所以,如果你序列化的是列表或者字典,推荐使用 json 模块
如果是要序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,就可以使用 pickle 模块.
来源:https://www.cnblogs.com/87pzy/p/10638455.html