几何观点下的导数:
y−y0=−x021(x−x0)
表示法:
f′=dxdf=dxdy=dxdf=dxdy
f’–newton 牛顿表示法
others - leibuniz 莱伯尼兹表示法
binomial theorem 二项式定理
(x+Δx)n=(x+Δx)..(x+Δx)=xn+nxn−1Δx+junk(O(Δx)2)
ΔxΔf=Δx1((x+Δx)2−xn)
…
=nxn−1+O(Δx)
So:
dxdxn=nxn−1
extends to polynomials:
dxd(x3+5x10)=3x2+50x9
什么是导数(Derivative)?
答案:改变率(Rate of change )
average change 瞬时率(instaneous rate)
Ex:
1.q = charge 电荷,dtdq=current 电流
2.s = distance ,dtds=speed
Ex:
h=80−5t2
t=0,h=80
t=4,h=0
ava speed :
ΔtΔh=4−00−80=−20m/sec
instaneous speed:
dtdh=0−10t
t=4
h′=−40m/sec 是两倍的ava speed
3.T = temperature
dxdT=gradient
4.测试灵敏度 sensitivity of measures
limits and continuity
limx→x0x−x0f(x0+Δx)−f(x0); x=x0,gives00
need concellation
judgement
1.limx→x0f(x) exists
2.f(x0) is defined.
3.they are equal.
limx→0xsinx=1
limx→0x1−cosx=0
removable discontinuity:y=x1
点不等
infinite discontinuity:y=sinx1
THEOREM:
DIFF----->CTS 可导必连续