人工智能教程 - 数学基础课程1.1 - 数学分析(一)1-2 导数,二项式定理

眉间皱痕 提交于 2020-02-16 23:24:40

几何观点下的导数:

yy0=1x02(xx0)y-y_{0} = -\frac{1}{x_{0}^{2}}(x-x_{0})

表示法:

f=dfdx=dydx=ddxf=ddxy{f}' = \frac{df}{dx} = \frac{dy}{dx}= \frac{d}{dx} f= \frac{d}{dx} y

f’–newton 牛顿表示法
others - leibuniz 莱伯尼兹表示法

binomial theorem 二项式定理

(x+Δx)n=(x+Δx)..(x+Δx)=xn+nxn1Δx+junk(O(Δx)2)(x+\Delta x)^{n} =(x+\Delta x)..(x+\Delta x)=x^{n}+nx^{n-1}\Delta x+junk(O(\Delta x)^{2})

ΔfΔx=1Δx((x+Δx)2xn)\frac{\Delta f}{\Delta x} = \frac{1}{\Delta x}((x+\Delta x)^2-x^n)


=nxn1+O(Δx)=nx^{^{n-1}}+O(\Delta x)

So:

ddxxn=nxn1\frac{d}{dx}x^n = nx^{n-1}

extends to polynomials:

ddx(x3+5x10)=3x2+50x9\frac{d}{dx}(x^3+5x^{10})=3x^2+50x^9

什么是导数(Derivative)?

答案:改变率(Rate of change )

average change 瞬时率(instaneous rate)

Ex:

1.q = charge 电荷,dqdt=current\frac{dq}{dt} =current 电流
2.s = distance ,dsdt=speed\frac{ds}{dt}=speed

Ex:
h=805t2h = 80-5t^2

t=0,h=80
t=4,h=0
ava speed :

ΔhΔt=08040=20m/sec\frac{\Delta h}{\Delta t}=\frac{0-80}{4-0}=-20 m/sec

instaneous speed:

ddth=010t\frac{d}{dt}h = 0-10t

t=4
h=40m/sec{h}' =-40m/sec 是两倍的ava speed

3.T = temperature

dTdx=gradient\frac{dT}{dx}=gradient

4.测试灵敏度 sensitivity of measures

limits and continuity

  • easy limit

  • Derivatives are always harder

limxx0f(x0+Δx)f(x0)xx0;   x=x0,gives00\lim_{x\rightarrow x_{0}{}}\frac{f(x_0+\Delta x)-f(x_0)}{x-x_0}; \ \ \ x=x_0,gives \frac{0}{0}

need concellation
judgement
1.limxx0f(x)   exists1.\lim_{x\rightarrow x_{0}{}}f(x) \ \ \ exists
2.f(x0) is defined.2.f(x_0) \ is \ defined.
3.they are equal.

limx0sinxx=1\lim_{x\rightarrow 0{}} \frac{sinx}{x} =1

limx01cosxx=0\lim_{x\rightarrow 0{}} \frac{1-cosx}{x} =0

removable discontinuity:y=1xy=\frac{1}{x}
点不等
infinite discontinuity:y=sin1xy=sin\frac{1}{x}

THEOREM:

DIFF----->CTS 可导必连续

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!