问题
I am trying to learn how to automate running 3 or more regression models over subsets of a dataset using the purrr and broom packages in R. I am doing this with the nest %>% mutate(map()) %>% unnest() flow in mind.
I am able to replicate examples online when there is only one regression model that is applied to several data subsets. However, I am running into problems when I have more than one regression model in my function.
What I tried to do
library(tidyverse)
library(broom)
estimate_model <- function(df) {
model1 <- lm(mpg ~ wt, data = df)
model2 <- lm(mpg ~ wt + gear, data = df)
model3 <- lm(mpg ~ wt + gear + vs, data = df)
}
ols_1dep_3specs <- mtcars %>%
nest(-cyl) %>%
mutate(
estimates = map(data, estimate_model), # want to run several models at once
coef_wt = map(estimate, ~pluck(coef(.), "wt")), # coefficient of wt only
se_wt = map(estimate, ~pluck(tidy(.), "std.error")[[2]]), # se of wt only
rsq = map(model, ~pluck(glance(.), "r.squared")),
arsq = map(model, ~pluck(glance(.), "adj.r.squared"))
) %>%
unnest(coef_wt, se_wt, rsq, arsq)
ols_1dep_3specs
Unfortunately, this seems to only work when the function estimate_model
only contains one regression model. Any advice on how one would go about writing code when there are several specifications? Open to suggestions outside the nest() %>% mutate(map()) %>% nest() framework.
The following code sort of gets at what I am hoping to achieve but it involves a lot of repetition.
estimate_model1 <- function(df) {
model1 <- lm(mpg ~ wt, data = df)
}
estimate_model2 <- function(df) {
model2 <- lm(mpg ~ wt + gear, data = df)
}
estimate_model3 <- function(df) {
model3 <- lm(mpg ~ wt + gear + vs, data = df)
}
ols_1dep_3specs <- mtcars %>%
nest(-cyl) %>%
mutate(model_1 = map(data, estimate_model1),
model_2 = map(data, estimate_model2),
model_3 = map(data, estimate_model3)) %>%
mutate(coef_wt_1 = map_dbl(model_1, ~pluck(coef(.), "wt")),
coef_wt_2 = map_dbl(model_2, ~pluck(coef(.), "wt")),
coef_wt_3 = map_dbl(model_3, ~pluck(coef(.), "wt")),
rsq_1 = map_dbl(model_1, ~pluck(glance(.), "r.squared")),
rsq_2 = map_dbl(model_2, ~pluck(glance(.), "r.squared")),
rsq_3 = map_dbl(model_3, ~pluck(glance(.), "r.squared"))) %>%
dplyr::select(starts_with("coef_wt"), starts_with("rsq"))
回答1:
In the function, there is no return call, it would be better to place all the models in a list
estimate_model <- function(df) {
model1 <- lm(mpg ~ wt, data = df)
model2 <- lm(mpg ~ wt + gear, data = df)
model3 <- lm(mpg ~ wt + gear + vs, data = df)
list(model1, model2, model3)
}
and then apply the first piece of code by looping over each list
element
mtcars %>%
group_by(cyl) %>%
nest() %>%
mutate(estimates = map(data, estimate_model),
coef_wt = map(estimates, ~map_dbl(.x, ~ pluck(coef(.x), "wt"))),
se_wt = map(estimates, ~map_dbl(.x, ~pluck(tidy(.x), "std.error")[[2]])),
rsq = map(estimates, ~ map_dbl(.x, ~pluck(glance(.x), "r.squared"))),
arsq = map(estimates, ~map_dbl(.x, ~ pluck(glance(.x), "adj.r.squared")))) %>%
unnest(c(coef_wt, se_wt, rsq, arsq))
# A tibble: 9 x 7
# Groups: cyl [3]
# cyl data estimates coef_wt se_wt rsq arsq
# <dbl> <list<df[,10]>> <list> <dbl> <dbl> <dbl> <dbl>
#1 6 [7 × 10] <list [3]> -2.78 1.33 0.465 0.357
#2 6 [7 × 10] <list [3]> -3.92 1.41 0.660 0.489
#3 6 [7 × 10] <list [3]> -6.19 4.49 0.690 0.379
#4 4 [11 × 10] <list [3]> -5.65 1.85 0.509 0.454
#5 4 [11 × 10] <list [3]> -5.38 2.08 0.517 0.396
#6 4 [11 × 10] <list [3]> -5.13 2.16 0.555 0.364
#7 8 [14 × 10] <list [3]> -2.19 0.739 0.423 0.375
#8 8 [14 × 10] <list [3]> -2.43 0.798 0.459 0.361
#9 8 [14 × 10] <list [3]> -2.43 0.798 0.459 0.361
回答2:
Using purrr::lst
automatically names that list after its elements, which helps you keep track of your models later. After applying the function to your nested data, you can pull out a column of the model names.
I chose to replace the pluck
ing with unnesting earlier in the workflow and using 2 map calls to get values out as vectors rather than lists. It's just a preference, but I have an easier time when columns are less-deeply nested.
library(tidyverse)
library(broom)
estimate_model <- function(df) {
model1 <- lm(mpg ~ wt, data = df)
model2 <- lm(mpg ~ wt + gear, data = df)
model3 <- lm(mpg ~ wt + gear + vs, data = df)
lst(model1, model2, model3)
}
mtcars %>%
group_by(cyl) %>%
nest() %>%
mutate(mods = map(data, estimate_model),
mod_id = map(mods, names)) %>%
unnest(c(mod_id, mods)) %>%
mutate(coef_wt = map(mods, coef) %>% map_dbl("wt"),
se_wt = map(mods, tidy) %>% map("std.error") %>% .[[2]],
rsq = map(mods, glance) %>% map_dbl("r.squared"),
arsq = map(mods, glance) %>% map_dbl("adj.r.squared"))
#> # A tibble: 9 x 8
#> # Groups: cyl [3]
#> cyl data mods mod_id coef_wt se_wt rsq arsq
#> <dbl> <list<df[,10]>> <list> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 6 [7 × 10] <lm> model1 -2.78 6.36 0.465 0.357
#> 2 6 [7 × 10] <lm> model2 -3.92 1.41 0.660 0.489
#> 3 6 [7 × 10] <lm> model3 -6.19 0.727 0.690 0.379
#> 4 4 [11 × 10] <lm> model1 -5.65 11.6 0.509 0.454
#> 5 4 [11 × 10] <lm> model2 -5.38 2.08 0.517 0.396
#> 6 4 [11 × 10] <lm> model3 -5.13 2.20 0.555 0.364
#> 7 8 [14 × 10] <lm> model1 -2.19 4.91 0.423 0.375
#> 8 8 [14 × 10] <lm> model2 -2.43 0.798 0.459 0.361
#> 9 8 [14 × 10] <lm> model3 -2.43 0.835 0.459 0.361
来源:https://stackoverflow.com/questions/59569458/iterating-over-multiple-regression-models-and-data-subsets-in-r