初等函数积分的刘维尔定理Liouville's theorem on integration in terms of elementary functions

。_饼干妹妹 提交于 2020-01-22 01:51:08

先看两篇中文文章,或许有助于理解接下来的英文内容。




以下内容的PDF文件下载地址:https://ksda.ccny.cuny.edu/PostedPapers/liouv06.pdf

       This talk should be regarded as an elementary introduction to differential algebra. It culminates in a purely algebraic proof, due to M. Rosenlicht, of an 1835 theorem of Liouville on the existence of “elementary” integrals of “elementary” functions. The precise meaning of elementary will be specified. As an application of that theorem we prove that the indefinite integral ∫e^(x^2)dx cannot be expressed in terms of elementary functions.
       这次演讲应该被看作是对微分代数的初步介绍。由M.Rosenlicht 于1835年提出的关于“初等”函数的“初等”积分的存在性的刘维尔定理,其结果是一个纯粹的代数证明。“基本”的精确意义将被指定。作为该定理的一个应用,我们证明了不定积分∫e^(x^2)dx不能用初等函数表示。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!