一、数制转换
1. 其他进制转10进制
按权展开法,位数为0的可省略不计算(0乘任何数都为0),最低位为0
例:
2. 10进制转其他进制
短除法:十进制数/进制,直到商为小于1时为止,余数拼接,先得到的余数为低位有效位,后得到余数为高位有效位。
例:十进制52转换为二进制后为 110100
3.二进制转八进制和十六进制
转八进制:每三个2进制位对应一个8进制位
转十六进制:每四个2进制位对应一个16进制位
例:二进制1011010对应8进制的132,对应16进制的5A
二、原码、反码、补码、移码
深入理解请转原码,反码,补码杂谈
1. 原码
最高位为符号位,0表示正数, 1表示负数
2. 反码
正数的反码和原码相同,负数:符号位不变,其余位取反(0变1,1变0)
3. 补码
正数的反码和原码相同,负数:反码+1
作用:补码出现是为了便于运算,可以不考虑符号位,用加法代替减法。
4. 移码
不论正负,将补码的符号位取反,其余不变
作用:一般会把浮点数的阶码用移码表示,便于比较大小
例:
1 | -1 | |
---|---|---|
原码 | 0000 0001 | 1000 0001 |
反码 | 0000 0001 | 1111 1110 |
补码 | 0000 0001 | 1111 1111 |
移码 | 1000 0001 | 0111 1111 |
三、浮点数
只记录了一些考点,没有深入研究。
表示方法:,其中M称为尾数, e是指数(也叫阶码), R为基数。
运算三个步骤: 对阶、 尾数计算、 结果格式化。
特点:
- 一般尾数用补码表示,阶码用移码表示
- 阶码的位数决定数的表示范围,位数越多范围越大。
- 尾数的位数决定数的有效精度,位数越多精度越高。
来源:CSDN
作者:纷纷四季
链接:https://blog.csdn.net/Laputa219/article/details/103755765