TensorFlow计算模型--计算图
计算图的概念
TensorFlow两个重要概念:Tensor和Flow,Tensor就是张量(可以理解为多维数组),Flow就是计算相互转化的过程。TensorFlow的计算方式类似Spark的有向无环图(DAG),在创建Session之后才开始计算(类似Action算子)。
简单示例
import tensorflow as tf a = tf.constant([1.0,2.0],name="a") b = tf.constant([3.0,4.0],name="b") result = a + b sess = tf.Session() print(sess.run(result)) # [ 4. 6.]
TensorFlow数据模型--张量
张量的概念
张量可以简单理解为多维数组。 零阶张量表示标量(scalar),也就是一个数。一阶张量表示为向量(vector),也就是一维数组。n阶张量表示为n维数组。但张量在TensorFlow中只是对结算结果的引用,它保存的是如何得到这些数字的计算过程。
import tensorflow as tf a = tf.constant([1.0,2.0],name="a") b = tf.constant([3.0,4.0],name="b") result = a + b print(result) # Tensor("add_1:0", shape=(2,), dtype=float32)
上面输出了三个属性:名字(name)、维度(shape)、类型(type)
张量的第一个属性名字是张量的唯一标识符,也显示出这个张量是如何计算出来的
张量的第二个属性维度是张量的维度信息,上面输出结果shape(2,)表示是一个一维数组,长度为2
张量的第三个属性类型是每个张量都会有的唯一类型,TensorFlow会对所有参与运算的张量进行类型检查,如果类型不匹配会报错。
TensorFlow运行模型--会话
创建会话的两种方式
# 创建一个会话 sess = tf.Session() sess.run() sess.cloes() # 这种创建会话的方式需要显示关闭会话,释放资源
# 使用python 上下位管理器来管理这个会话 with tf.Session() as sess: sess.run() # 不需要显示调用"sess.close()"函数来关闭会话 # 当上下文退出时会话关闭和资源释放也自动完成了
TensorFlow会生成一个默认的计算图,可以通过tf.Tensor.eval函数来计算一个张量的取值
import tensorflow as tf a = tf.constant([1.0,2.0],name="a") b = tf.constant([3.0,4.0],name="b") result = a + b with tf.Session() as sess: # 两种方式计算张量的取值 print(sess.run(result)) print(result.eval(session=sess))
神经网络参数与TenworFlow变量
变量(tf.Variable)的作用就是保存和更新神经网络中的参数
# 声明一个2 * 3 的矩阵变量,矩阵均值为0,标准差为2的随机数 import tensorflow as tf weights = tf.Variable(tf.random_normal([2,3],stddev=2)) # 初始化变量 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) print(sess.run(weights)) # [[-0.69297457 1.13187325 2.36984086] # [ 1.20076609 0.77468276 2.01622796]]
TensorFlow随机数生成函数
函数名称 | 随机数分布 | 主要参数 |
---|---|---|
tf.random_normal | 正太分布 | 平均值、标准差、取值类型 |
tf.truncated_normal | 正太分布,但如果随机出来的值离平均值超过2个标准差,那么这个数将会被重新随机 | 平均值、标准差、取值类型 |
tf.random_uniform | 平均分布 | 最小、最大取值、取值类型 |
tf.random_gramma | Gramma分布 | 形状参数alpha、尺度参数beta、取值类型 |
TensorFlow常数生成函数
函数名称 | 功能 | 样例 |
---|---|---|
tf.zeros | 产生全0的数组 | tf.zeros([2,3],int32)->[[0,0,0],[0,0,0]] |
tf.ones | 产生全1的数组 | tf.ones([2,3],int32)->[[1,1,1],[1,1,1]] |
tf.fill | 产生一个全部为给定数字的数组 | tf.fill([2,3],9)->[[9,9,9],[9,9,9]] |
tf.constant | 产生一个给定值的常量 | tf.constant([1,2,3])->[1,2,3] |
神经网络程序
import tensorflow as tf from numpy.random import RandomState # 定义训练数据batch的大小 batch_size = 8 # 定义神经网络的参数 w1 = tf.Variable(tf.random_normal([2,3],stddev=1,seed=1)) w2 = tf.Variable(tf.random_normal([3,1],stddev=1,seed=1)) # 在shape的一个维度上使用None可以方便使用不同的batch大小 x = tf.placeholder(tf.float32,shape=(None,2),name='x-input') y_ = tf.placeholder(tf.float32,shape=(None,1),name='y-input') # 定义神经网络前向传播的过程 a = tf.matmul(x,w1) y = tf.matmul(a,w2) # 定义损失函数和反响传播算法 cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y,1e-10,1.0))) train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) # 通过随机数生成一个模拟数据集 rdm = RandomState(1) dataset_size = 128 X = rdm.rand(dataset_size,2) # 定义规则来给出样本的标签,x1+x2<1的样例都被认为是正样本,其他为负样本,0:负样本,1:正样本 Y = [[int(x1+x2<1)] for (x1,x2) in X] # 创建一个会话来运行TensorFlow程序 with tf.Session() as sess: # 初始化变量 init_op = tf.global_variables_initializer() sess.run(init_op) print(sess.run(w1)) print(sess.run(w2)) # 设定训练的轮数 STEPS = 5000 for i in range(STEPS): # 每次选取batch_size 个样本进行训练 start = (i * batch_size)% dataset_size end = min(start+batch_size,dataset_size) # 通过选取的样本训练神经网络并更新参数 sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]}) if i % 1000 == 0: total_cross_entropy = sess.run(cross_entropy,feed_dict={x:X,y_:Y}) print("After %d trainint step(s),cross entropy on all data is %g" % (i,total_cross_entropy)) print(sess.run(w1)) print(sess.run(w2))
训练神经网络的过程可以分为3个步骤:
- 定义神经网络的结构和前向传播的输出结果
- 定义损失函数以及选择反向传播优化的算法
- 生成会话(tf.Session)并在训练数据上仿佛运行反向传播优化算法
tensorflow实现线性回归
''' A linear regression learning algorithm example using TensorFlow library. Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random # Parameters learning_rate = 0.01 training_epochs = 1000 display_step = 50 # Training Data train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Set model weights W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") # Construct a linear model pred = tf.add(tf.multiply(X, W), b) # Mean squared error cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples) # Gradient descent # Note, minimize() knows to modify W and b because Variable objects are trainable=True by default optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Initializing the variables init = tf.global_variables_initializer() # Launch the graph with tf.Session() as sess: sess.run(init) # Fit all training data for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y}) # Display logs per epoch step if (epoch+1) % display_step == 0: c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \ "W=", sess.run(W), "b=", sess.run(b)) print("Optimization Finished!") training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y}) print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n') # Graphic display plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show() # Testing example, as requested (Issue #2) test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1]) test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03]) print("Testing... (Mean square loss Comparison)") testing_cost = sess.run( tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]), feed_dict={X: test_X, Y: test_Y}) # same function as cost above print("Testing cost=", testing_cost) print("Absolute mean square loss difference:", abs( training_cost - testing_cost)) plt.plot(test_X, test_Y, 'bo', label='Testing data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show()
tensorflow实现逻辑回归
''' A logistic regression learning algorithm example using TensorFlow library. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # Parameters learning_rate = 0.01 training_epochs = 25 batch_size = 100 display_step = 1 # tf Graph Input x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784 y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes # Set model weights W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) # Construct model pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax # Minimize error using cross entropy cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1)) # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Initializing the variables init = tf.global_variables_initializer() # Launch the graph with tf.Session() as sess: sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs, y: batch_ys}) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if (epoch+1) % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) print("Optimization Finished!") # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
tensorflow实现K-近邻
''' A nearest neighbor learning algorithm example using TensorFlow library. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import numpy as np import tensorflow as tf # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # In this example, we limit mnist data Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates) Xte, Yte = mnist.test.next_batch(200) #200 for testing # tf Graph Input xtr = tf.placeholder("float", [None, 784]) xte = tf.placeholder("float", [784]) # Nearest Neighbor calculation using L1 Distance # Calculate L1 Distance distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), reduction_indices=1) # Prediction: Get min distance index (Nearest neighbor) pred = tf.arg_min(distance, 0) accuracy = 0. # Initializing the variables init = tf.global_variables_initializer() # Launch the graph with tf.Session() as sess: sess.run(init) # loop over test data for i in range(len(Xte)): # Get nearest neighbor nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i, :]}) # Get nearest neighbor class label and compare it to its true label print("Test", i, "Prediction:", np.argmax(Ytr[nn_index]), \ "True Class:", np.argmax(Yte[i])) # Calculate accuracy if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]): accuracy += 1./len(Xte) print("Done!") print("Accuracy:", accuracy)
笔记来自<< TensorFlow:实战Google深度学习框架 >>
来源:https://www.cnblogs.com/Elag/p/7009476.html