平衡二叉树
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
返回 false 。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
if (!root) return true;
if(abs(getDepth(root->left)-getDepth(root->right)) > 1)
return false;
return isBalanced(root->left) && isBalanced(root->right);
}
int getDepth(TreeNode *root) {
if (!root) return 0;
return 1 + max(getDepth(root->left),getDepth(root->right));
}
};
*/
class Solution {
public:
bool isBalanced(TreeNode *root) {
if (checkDepth(root) == -1) return false;
else return true;
}
int checkDepth(TreeNode *root) {
if (!root) return 0;
int left = checkDepth(root->left);
if (left == -1) return -1;
int right = checkDepth(root->right);
if (right == -1) return -1;
int diff = abs(left - right);
if (diff > 1) return -1;
else return 1 + max(left, right);
}
};
*/Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
return self.depth(root) != -1
def depth(self,root):
if not root:
return 0
left = self.depth(root.left)
if left == -1:
return -1
right = self.depth(root.right)
if right == -1:
return -1
return max(left,right) + 1 if abs(left-right) < 2 else -1
*/
class Solution:
def isBalanced(self,root):
if not root:
return True
return abs(self.depth(root.left)-self.depth(root.right)) <=1 and self.isBalanced(root.left) and self.isBalanced(root.right)
def depth(self,root):
if not root:
return 0
return max(self.depth(root.left),self.depth(root.right)) + 1
来源:CSDN
作者:AI算法工程师YC
链接:https://blog.csdn.net/qq_36134437/article/details/103881767