问题
Blow is a main file
PROGRAM SPHEROID
USE nrtype
USE SUB_INFO
INCLUDE "/usr/local/include/fftw3.f"
INTEGER(I8B) :: plan_forward, plan_backward
INTEGER(I4B) :: i, t, int_N
REAL(DP) :: cth_i, sth_i, real_i, perturbation
REAL(DP) :: PolarEffect, dummy, x1, x2, x3
REAL(DP), DIMENSION(4096) :: dummy1, dummy2, gam, th, ph
REAL(DP), DIMENSION(4096) :: k1, k2, k3, k4, l1, l2, l3, l4, f_in
COMPLEX(DPC), DIMENSION(2049) :: output1, output2, f_out
CHARACTER(1024) :: baseOutputFilename
CHARACTER(1024) :: outputFile, format_string
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
int_N = 4096
! File Open Section
format_string = '(I5.5)'
! Write the coodinates at t = 0
do i = 1, N
real_i = real(i)
gam(i) = 2d0*pi/real_N
perturbation = 0.01d0*dsin(2d0*pi*real_i/real_N)
ph(i) = 2d0*pi*real_i/real_N + perturbation
th(i) = pi/3d0 + perturbation
end do
! Initialization Section for FFTW PLANS
call dfftw_plan_dft_r2c_1d(plan_forward, int_N, f_in, f_out, FFTW_ESTIMATE)
call dfftw_plan_dft_c2r_1d(plan_backward, int_N, f_out, f_in, FFTW_ESTIMATE)
! Runge-Kutta 4th Order Method Section
do t = 1, Iter_N
call integration(th, ph, gam, k1, l1)
do i = 1, N
dummy1(i) = th(i) + 0.5d0*dt*k1(i)
end do
do i = 1, N
dummy2(i) = ph(i) + 0.5d0*dt*l1(i)
end do
call integration(dummy1, dummy2, gam, k2, l2)
do i = 1, N
dummy1(i) = th(i) + 0.5d0*dt*k2(i)
end do
do i = 1, N
dummy2(i) = ph(i) + 0.5d0*dt*l2(i)
end do
call integration(dummy1, dummy2, gam, k3, l3)
do i = 1, N
dummy1(i) = th(i) + dt*k3(i)
end do
do i = 1, N
dummy2(i) = ph(i) + dt*l3(i)
end do
call integration(dummy1, dummy2, gam, k4, l4)
do i = 1, N
cth_i = dcos(th(i))
sth_i = dsin(th(i))
PolarEffect = (nv-sv)*dsqrt(1d0+a*sth_i**2) + (nv+sv)*cth_i
PolarEffect = PolarEffect/(sth_i**2)
th(i) = th(i) + dt*(k1(i) + 2d0*k2(i) + 2d0*k3(i) + k4(i))/6d0
ph(i) = ph(i) + dt*(l1(i) + 2d0*l2(i) + 2d0*l3(i) + l4(i))/6d0
ph(i) = ph(i) + dt*0.25d0*PolarEffect/pi
end do
!! Fourier Filtering Section
call dfftw_execute_dft_r2c(plan_forward, th, output1)
do i = 1, N/2+1
dummy = abs(output1(i))
if (dummy.lt.threshhold) then
output1(i) = dcmplx(0.0d0)
end if
end do
call dfftw_execute_dft_c2r(plan_backward, output1, th)
do i = 1, N
th(i) = th(i)/real_N
end do
call dfftw_execute_dft_r2c(plan_forward, ph, output2)
do i = 1, N/2+1
dummy = abs(output2(i))
if (dummy.lt.threshhold) then
output2(i) = dcmplx(0.0d0)
end if
end do
call dfftw_execute_dft_c2r(plan_backward, output2, ph)
do i = 1, N
ph(i) = ph(i)/real_N
end do
!! Data Writing Section
write(baseOutputFilename, format_string) t
outputFile = "xyz" // baseOutputFilename
open(unit=7, file=outputFile)
outputFile = "Fsptrm" // baseOutputFilename
open(unit=8, file=outputFile)
do i = 1, N
x1 = dsin(th(i))*dcos(ph(i))
x2 = dsin(th(i))*dsin(ph(i))
x3 = dsqrt(1d0+a)*dcos(th(i))
write(7,*) x1, x2, x3
end do
do i = 1, N/2+1
write(8,*) abs(output1(i)), abs(output2(i))
end do
close(7)
close(8)
do i = 1, N/2+1
output1(i) = dcmplx(0.0d0)
end do
do i = 1, N/2+1
output2(i) = dcmplx(0.0d0)
end do
end do
! Destroying Process for FFTW PLANS
call dfftw_destroy_plan(plan_forward)
call dfftw_destroy_plan(plan_backward)
END PROGRAM
Below is a subroutine file for integration
! We implemented Shelly's spectrally accurate convergence method
SUBROUTINE integration(in1,in2,in3,out1,out2)
USE nrtype
USE SUB_INFO
INTEGER(I4B) :: i, j
REAL(DP) :: th_i, th_j, gi, ph_i, ph_j, gam_j, v1, v2
REAL(DP), DIMENSION(N), INTENT(INOUT) :: in1, in2, in3, out1, out2
REAL(DP) :: ui, uj, part1, part2, gj, cph, sph
REAL(DP) :: denom, numer, temp
do i = 1, N
out1(i) = 0d0
end do
do i = 1, N
out2(i) = 0d0
end do
do i = 1, N
th_i = in1(i)
ph_i = in2(i)
ui = dcos(th_i)
part1 = dsqrt(1d0+a)/(dsqrt(-a)*ui+dsqrt(1d0+a-a*ui*ui))
part1 = part1**(dsqrt(-a))
part2 = (dsqrt(1d0+a-a*ui*ui)+ui)/(dsqrt(1d0+a-a*ui*ui)-ui)
part2 = dsqrt(part2)
gi = dsqrt(1d0-ui*ui)*part1*part2
do j = 1, N
if (mod(i+j,2).eq.1) then
th_j = in1(j)
ph_j = in2(j)
gam_j = in3(j)
uj = dcos(th_j)
part1 = dsqrt(1d0+a)/(dsqrt(-a)*uj+dsqrt(1d0+a-a*uj*uj))
part1 = part1**(dsqrt(-a))
part2 = (dsqrt(1d0+a-a*uj*uj)+uj)/(dsqrt(1d0+a-a*uj*uj)-uj)
part2 = dsqrt(part2)
gj = dsqrt(1d0-ui*ui)*part1*part2
cph = dcos(ph_i-ph_j)
sph = dsin(ph_i-ph_j)
numer = dsqrt(1d0-uj*uj)*sph
denom = (gj/gi*(1d0-ui*ui) + gi/gj*(1d0-uj*uj))*0.5d0
denom = denom - dsqrt((1d0-ui*ui)*(1d0-uj*uj))*cph
denom = denom + krasny_delta
v1 = -0.25d0*gam_j*numer/denom/pi
temp = dsqrt(1d0+(1d0-ui*ui)*a)
numer = -(gj/gi)*(temp+ui)
numer = numer + (gi/gj)*((1d0-uj*uj)/(1d0-ui*ui))*(temp-ui)
numer = numer + 2d0*ui*dsqrt((1d0-uj*uj)/(1d0-ui*ui))*cph
numer = 0.5d0*numer
v2 = -0.25d0*gam_j*numer/denom/pi
out1(i) = out1(i) + 2d0*v1
out2(i) = out2(i) + 2d0*v2
end if
end do
end do
END
Below is a module file
module nrtype
Implicit none
!integer
INTEGER, PARAMETER :: I8B = SELECTED_INT_KIND(20)
INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)
!real
INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0D0)
!complex
INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))
!defualt logical
INTEGER, PARAMETER :: LGT = KIND(.true.)
!mathematical constants
REAL(DP), PARAMETER :: pi = 3.141592653589793238462643383279502884197_dp
!derived data type s for sparse matrices,single and double precision
!User-Defined Constants
INTEGER(I4B), PARAMETER :: N = 4096, Iter_N = 20000
REAL(DP), PARAMETER :: real_N = 4096d0
REAL(DP), PARAMETER :: a = -0.1d0, dt = 0.001d0, krasny_delta = 0.01d0
REAL(DP), PARAMETER :: nv = 0d0, sv = 0d0, threshhold = 0.00000000001d0
!N : The Number of Point Vortices, Iter_N * dt = Total time, dt : Time Step
!krasny_delta : Smoothing Parameter introduced by R.Krasny
!nv : Northern Vortex Strength, sv : Southern Vortex Strength
!a : The Eccentricity in the direction of z , threshhold : Filtering Threshhold
end module nrtype
Below is a subroutine info file
MODULE SUB_INFO
INTERFACE
SUBROUTINE integration(in1,in2,in3,out1,out2)
USE nrtype
INTEGER(I4B) :: i, j
REAL(DP) :: th_i, th_j, gi, ph_i, ph_j, gam_j, v1, v2
REAL(DP), DIMENSION(N), INTENT(INOUT) :: in1, in2, in3, out1, out2
REAL(DP) :: ui, uj, part1, part2, gj, cph, sph
REAL(DP) :: denom, numer, temp
END SUBROUTINE
END INTERFACE
END MODULE
I compiled them using the below command
gfortran -o p0 -fbounds-check nrtype.f90 spheroid_sub_info.f90 spheroid_sub_integration.f90 spheroid_main.f90 -lfftw3 -lm -Wall -pedantic -pg
nohup ./p0 &
Note that 2049 = 4096 / 2 + 1
When making plan_backward, isn't it correct that we use 2049 instead of 4096 since the dimension of output is 2049?
But when I do that, it blows up. (Blowing up means NAN error)
If I use 4096 in making plan_backward, Everything is fine except that some Fourier coefficients are abnormally big which should not happen.
Please help me use FFTW in Fortran correctly. This issue has discouraged me for a long time.
回答1:
One issue may be that dfftw_execute_dft_c2r
can destroy the content of the input array, as described in this page. The key excerpt is
FFTW_PRESERVE_INPUT
specifies that an out-of-place transform must not change its input array. This is ordinarily the default, except for c2r and hc2r (i.e. complex-to-real) transforms for whichFFTW_DESTROY_INPUT
is the default...
We can verify this, for example, by modifying the sample code by @VladimirF such that it saves data_out
to data_save
right after the first FFT(r2c) call, and then calculating their difference after the second FFT (c2r) call. So, in the case of OP's code, it seems safer to save output1
and output2
to different arrays before entering the second FFT (c2r).
回答2:
First, although you claim your example is minimal, it is still pretty large, I have no time to study it.
But I updated my gist code https://gist.github.com/LadaF/73eb430682ef527eea9972ceb96116c5 to show also the backward transform and to answer the title question about the transform dimensions.
The logical size of the transform is the size of the real array (Real-data DFT Array Format) but the complex part is smaller due to inherent symmetries.
But when you make first r2c transform from real array of size n
to complex array of size n/2+1
. and then an opposite transform back, the real array should be again of size n
.
This is my minimal example from the gist:
module FFTW3
use, intrinsic :: iso_c_binding
include "fftw3.f03"
end module
use FFTW3
implicit none
integer, parameter :: n = 100
real(c_double), allocatable :: data_in(:)
complex(c_double_complex), allocatable :: data_out(:)
type(c_ptr) :: planf, planb
allocate(data_in(n))
allocate(data_out(n/2+1))
call random_number(data_in)
planf = fftw_plan_dft_r2c_1d(size(data_in), data_in, data_out, FFTW_ESTIMATE+FFTW_UNALIGNED)
planb = fftw_plan_dft_c2r_1d(size(data_in), data_out, data_in, FFTW_ESTIMATE+FFTW_UNALIGNED)
print *, "real input:", real(data_in)
call fftw_execute_dft_r2c(planf, data_in, data_out)
print *, "result real part:", real(data_out)
print *, "result imaginary part:", aimag(data_out)
call fftw_execute_dft_c2r(planb, data_out, data_in)
print *, "real output:", real(data_in)/n
call fftw_destroy_plan(planf)
call fftw_destroy_plan(planb)
end
Note that I am using the modern Fortran interface. I don't like using the old one.
来源:https://stackoverflow.com/questions/36885526/when-using-r2c-and-c2r-fftw-in-fortran-are-the-forward-and-backward-dimensions