问题
I am new to Clojure and I want to define a function pt
taking as arguments a number n
and a sequence s
and returning all the partitions of s
in n
parts, i.e. its factorizations with respect to n
-concatenation. for example (pt 3 [0 1 2])
should produce:
(([] [] [0 1 2]) ([] [0] [1 2]) ([] [0 1] [2]) ([] [0 1 2] []) ([0] [] [1 2]) ([0] [1] [2]) ([0] [1 2] []) ([0 1] [] [2]) ([0 1] [2] []) ([0 1 2] [] []))
with the order being unimportant. Specifically, I want the result to be a lazy sequence of lazy sequences of vectors.
My first attempt for such a function was the following:
(defn pt [n s]
(lazy-seq
(if (zero? n)
(when (empty? s) [nil])
((fn split [a b]
(concat
(map (partial cons a) (pt (dec n) b))
(when-let [[bf & br] (seq b)] (split (conj a bf) br))))
[] s))))
After that, I wrote a somewhat less concise version which reduces the time complexity by avoiding useless comparisons for 1-part partitions, given below:
(defn pt [n s]
(lazy-seq
(if (zero? n)
(when (empty? s) [nil])
((fn pt>0 [n s]
(lazy-seq
(if (= 1 n)
[(cons (vec s) nil)]
((fn split [a b]
(concat
(map (partial cons a) (pt>0 (dec n) b))
(when-let [[bf & br] (seq b)] (split (conj a bf) br))))
[] s))))
n s))))
The problem with these solutions is that, although they work, they produce a lazy sequence of (non-lazy) cons's and I suspect that quite a different approach must be taken to achieve the "inner laziness". So any corrections, suggestions, explanations are welcome!
EDIT: After reading l0st3d's answer I thought I should make clear that I do not want a partition just to be a LazySeq but to be "really lazy", in the sense that a part is computed and held in memory only when it is requested. For example, both of the functions given below produce LazySeq's but only the first one produces a "really lazy" sequence.
(defn f [n]
(if (neg? n)
(lazy-seq nil)
(lazy-seq (cons n (f (dec n))))))
(defn f [n]
(if (neg? n)
(lazy-seq nil)
(#(lazy-seq (cons n %)) (f (dec n)))))
So mapping (partial concat [a])
or #(lazy-seq (cons a %))
instead of (partial cons a)
does not solve the problem.
回答1:
The cons
call in your split
inline fn is the only place where eagerness is being introduced. You could replace that with something that lazily constructs a list, like concat
:
(defn pt [n s]
(lazy-seq
(if (zero? n)
(when (empty? s) [nil])
((fn split [a b]
(concat
(map (partial concat [a]) (pt (dec n) b))
(when-let [[bf & br] (seq b)] (split (conj a bf) br))))
[] s))))
(every? #(= clojure.lang.LazySeq (class %)) (pt 3 [0 1 2 3])) ;; => true
But, reading the code I feel like it's fairly unClojurey, and I think that's to do with the use of recursion. Often you'd use things like reductions
, partition-by
, split-at
and so to do this sort of thing. I feel like there should also be a way to make this a transducer and separate out the lazyness from the processing (so you can use sequence
to say you want it lazily), but I haven't got time to work that out right now. I'll try and come back with a more complete answer soon.
来源:https://stackoverflow.com/questions/55881144/how-to-define-the-partitions-factorizations-w-r-t-concatenation-of-a-sequence