Matrix multiplication on GPU. Memory bank conflicts and latency hiding

大憨熊 提交于 2019-12-24 14:25:16

问题


Edit: achievements over time is listed at the end of this question(~1Tflops/s yet).

Im writing some kind of math library for C# using opencl(gpu) from C++ DLL and already done some optimizations on single precision square matrix-matrix multiplicatrion(for learning purposes and possibility of re-usage in a neural-network program later). Below kernel code gets v1 1D array as rows of matrix1(1024x1024) and v2 1D array as columns of matrix2((1024x1024)transpose optimization) and puts the result in v3 1D array as matrix-3's rows.(1024x1024)

For now, kernel execution time for 1024x1024 square matrix-matrix multiplication is 3.6 ms for HD7870.

Optimizations done:

  • Transpozition of second matrix.(improved time)
  • Computing in local memory with using 32x32 sub-matrices(4x 16x16 because maximum workgroup size is 256 on my HD7870 and gpu doesnt accept more than 24kB local for some reason but online sources say 64kB?)(anyway, improved time by a good margin)
  • Increasing data re-using with private variables before writing the result in local and global.(improved time)
  • Column major accessing to local 2D arrays in innermost loop. (improved time)
  • Sharing addition into two accumulator registers per patch. (improved time and decreased numerical stability)
  • Loop-unrolling the innermost loop did not improve time(even got worse after 4th unroll)(so integer alu's must be relaxed)

Question: I couldnt finish some optimizations such as eliminating all local(lds) bank conflicts and instruction re-ordering to hide memory latency. What can I do to polish this math function's performance?

This kernel is certainly local-memory bandwidth(conflict) bounded, having 3.2 ms for multiplication=

(1024*1024*1024 * (1 sum + 1 mult =2) / 0.0036 seconds )= 596x10^9 Flops per second(596 GFlops) I saw some online benchmark of CUDA on GTX680 and they have broken 1TFlops point. Because it has more local memory per compute unit or more cores or both?

(1024*1024*1024*(2 float reads)*(4 bytes per float) /0.0036 sec)=2386x10^9 bytes per second But this kernel reads 8 floats and uses them for 16 times which has data re-use of 2 per float.

2386x10^9 bytes / re-use(2) = 1193 GB/s

Theoretical maximas for HD7870 are:here, appendix D

Compute power=2560 Giga Floating point operations per second, LDS bandwidth=2560 GB/s and register access bandwidth=15360 GB/s

Here is kernel:

__kernel void squareGpuMatrixMul(__global float * v1, __global float * v2, __global float * v3) 
{
    int localRow = get_local_id(0); 
    int localCol = get_local_id(1);  
    int selectRowFromA = get_group_id(0)*32;     
    int selectColFromB = get_group_id(1)*32;     
    int lid= localCol*16+localRow; 
    __local float Lcache1[ 16][ 16]; 
    __local float Lcache2[ 16][ 16]; 
    __local float Lcache3[ 16][ 16]; 

    __local float Lcache1a[ 16][ 16]; 
    __local float Lcache2a[ 16][ 16]; 
    __local float Lcache3a[ 16][ 16]; 

    __local float Lcache1b[ 16][ 16]; 
    __local float Lcache2b[ 16][ 16]; 
    __local float Lcache3b[ 16][ 16]; 

    __local float Lcache1c[ 16][ 16]; 
    __local float Lcache2c[ 16][ 16]; 
    __local float Lcache3c[ 16][ 16]; 

    float tmp0=0.0f; 
    float tmp1=0.0f; 
    float tmp2=0.0f; 
    float tmp3=0.0f; 

    float tmp4=0.0f; 
    float tmp5=0.0f; 
    float tmp6=0.0f; 
    float tmp7=0.0f; 

    float sumPatch=0.0f; 
    float sumPatcha=0.0f; 
    float sumPatchb=0.0f; 
    float sumPatchc=0.0f; 
    float sumPatch2=0.0f; 
    float sumPatcha2=0.0f; 
    float sumPatchb2=0.0f; 
    float sumPatchc2=0.0f; 

    barrier(CLK_LOCAL_MEM_FENCE); 
    Lcache3[localRow][localCol]=0.0f; 
    Lcache3a[localRow][localCol]=0.0f; 
    Lcache3b[localRow][localCol]=0.0f; 
    Lcache3c[localRow][localCol]=0.0f; 
    barrier(CLK_LOCAL_MEM_FENCE); 
    for(int i=0;i<1024;i+=32)  // this is A's row and B's column parsed by sub-matrices
    { 
        barrier(CLK_LOCAL_MEM_FENCE); 
        Lcache1[localCol][localRow]=v1[selectRowFromA*1024+i+localCol+localRow*1024];
        Lcache2[localRow][localCol]=v2[selectColFromB*1024+i+localRow+localCol*1024];
        Lcache1a[localCol][localRow]=v1[selectRowFromA*1024+i+localCol+localRow*1024+ 16];
        Lcache2a[localRow][localCol]=v2[selectColFromB*1024+i+localRow+localCol*1024+ 16];
        Lcache1b[localCol][localRow]=v1[selectRowFromA*1024+i+localCol+localRow*1024+16384];
        Lcache2b[localRow][localCol]=v2[selectColFromB*1024+i+localRow+localCol*1024+16384];
        Lcache1c[localCol][localRow]=v1[selectRowFromA*1024+i+localCol+localRow*1024+ 16+16384];
        Lcache2c[localRow][localCol]=v2[selectColFromB*1024+i+localRow+localCol*1024+ 16+16384];
        barrier(CLK_LOCAL_MEM_FENCE); 
        sumPatch=0.0f; 
        sumPatcha=0.0f; 
        sumPatchb=0.0f; 
        sumPatchc=0.0f; 
        sumPatch2=0.0f; 
        sumPatcha2=0.0f; 
        sumPatchb2=0.0f; 
        sumPatchc2=0.0f; 
        for(int kk=0;kk< 16;kk++) //this is sub-matrix multiplication
        {   
            read_mem_fence(CLK_LOCAL_MEM_FENCE); 
            tmp0=Lcache1[kk][localRow];  // row-major
            tmp1=Lcache1a[kk][localRow]; // accesses
            tmp2=Lcache1b[kk][localRow]; //to local memory
            tmp3=Lcache1c[kk][localRow]; 
            tmp4=Lcache2[kk][localCol]; 
            tmp5=Lcache2a[kk][localCol]; 
            tmp6=Lcache2b[kk][localCol]; 
            tmp7=Lcache2c[kk][localCol]; 
            read_mem_fence(CLK_LOCAL_MEM_FENCE); 
            sumPatch+=tmp0*tmp4; 
            sumPatcha+=tmp0*tmp6; 
            sumPatchb+=tmp2*tmp4; 
            sumPatchc+=tmp2*tmp6; 
            sumPatch2+=tmp1*tmp5; 
            sumPatcha2+=tmp1*tmp7; 
            sumPatchb2+=tmp3*tmp5; 
            sumPatchc2+=tmp3*tmp7; 
        } 
        Lcache3[localRow][localCol]+=sumPatch+sumPatch2; 
        Lcache3a[localRow][localCol]+=sumPatcha+sumPatcha2; 
        Lcache3b[localRow][localCol]+=sumPatchb+sumPatchb2; 
        Lcache3c[localRow][localCol]+=sumPatchc+sumPatchc2; 
    } 
    barrier(CLK_LOCAL_MEM_FENCE); 
    v3[selectRowFromA*1024+selectColFromB+localCol+localRow*1024]=Lcache3[localRow][localCol];                   
    v3[selectRowFromA*1024+selectColFromB+localCol+localRow*1024+ 16]=Lcache3a[localRow][localCol];              
    v3[selectRowFromA*1024+selectColFromB+localCol+localRow*1024+16384]=Lcache3b[localRow][localCol];     
    v3[selectRowFromA*1024+selectColFromB+localCol+localRow*1024+ 16+16384]=Lcache3c[localRow][localCol];     
    barrier(CLK_LOCAL_MEM_FENCE); 
}

Here is what Ive tried to eliminate bank conflicts, but kernel execution time increased by around %20:

for(int kk=0;kk< 16;kk++) 
{   
    int nc=(kk+lid)&15;//different for all local threads
                       //but does not exceed 0-15 range
                       //summation order is not important
                       //0.+1.+...15. or 14.+15.+0.+..13.
                       //gives correct answer
    read_mem_fence(CLK_LOCAL_MEM_FENCE); 
    tmp0=Lcache1[nc][localRow]; 
    tmp1=Lcache1a[nc][localRow]; 
    tmp2=Lcache1b[nc][localRow]; 
    tmp3=Lcache1c[nc][localRow]; 
    tmp4=Lcache2[nc][localCol]; 
    tmp5=Lcache2a[nc][localCol]; 
    tmp6=Lcache2b[nc][localCol]; 
    tmp7=Lcache2c[nc][localCol]; 
    read_mem_fence(CLK_LOCAL_MEM_FENCE);
    sumPatch+=tmp0*tmp4;
    sumPatcha+=tmp0*tmp6;
    sumPatchb+=tmp2*tmp4;
    sumPatchc+=tmp2*tmp6;
    sumPatch2+=tmp1*tmp5;
    sumPatcha2+=tmp1*tmp7;
    sumPatchb2+=tmp3*tmp5;
    sumPatchc2+=tmp3*tmp7;
} 

Could this be broadcasting technology of new gpus? Also summation over 16 elements means only 16 banks are used? The device has 32 banks for local access.

Here is what Ive tried to hide memory latency:

for(int kk=0;kk< 16;kk++) 
{   
    int nc=(kk+lid)&15;//different for all local threads
                       //but does not exceed 0-15 range
                       //summation order is not important
                       //0.+1.+...15. or 14.+15.+0.+..13.
                       //gives correct answer
    read_mem_fence(CLK_LOCAL_MEM_FENCE); 
    tmp0=Lcache1[nc][localRow]; 
    tmp4=Lcache2[nc][localCol];
    sumPatch+=tmp0*tmp4; 
    tmp6=Lcache2b[nc][localCol];
    sumPatcha+=tmp0*tmp6; 
    tmp1=Lcache1a[nc][localRow];
    tmp7=Lcache2c[nc][localCol]; 
    sumPatcha2+=tmp1*tmp7; 
    tmp5=Lcache2a[nc][localCol];
    sumPatch2+=tmp1*tmp5; 
    tmp2=Lcache1b[nc][localRow]; 
    sumPatchb+=tmp2*tmp4;
    sumPatchc+=tmp2*tmp6; 
    tmp3=Lcache1c[nc][localRow]; 
    sumPatchb2+=tmp3*tmp5;
    sumPatchc2+=tmp3*tmp7;  
    read_mem_fence(CLK_LOCAL_MEM_FENCE);//this lines' position does not change time 
}

But this did not increase or decrease exec. time.

How can I improve kernel time? Doable?

Device: HD7870 @ 1000MHz/1200MHz Host: FX8150@4GHz Headers,LIB files from Khronos's Site, opencl.dll from AMD's drivers.

Time sampling is done with: cycyling the kernel for 100 times and dividing total time by 100.0 from a Stopwatch method as start() and stop(). And only for execution, array copies not included.

All results are compared against naive 3-nested-looped version with same inputs of random-matrices (results are within m(ij)+/-delta where delta is 0.001f. )

Kernel here is simplificated version of a more generalized one(for different matrix and patch sizes)

Kernel parameter of this version: Global= 512,512 Local=16,16, Referance=0,0

For 8320x8320 matrix --->Global=4160,4160, Local=16,16, ref=0,0 time = 1.87Seconds

Edit: Replacing local Lcache3 by private version improved 1024x1024 time to 2.7 ms with suggestion by DarkZeros. This is 795 GFlops per second. This must be from better occupation ratio.

Edit2: Lesser local usage opened possibility of using 48x48 (9 x 16x16) patches which made 1056x1056 multiplication 2.4 ms ---->981 Gflops/s. 8208x8208 is done in 961ms which is more than 1150 GFlops.


回答1:


Why so many fences? In fact I think you do not even need them at all. You only need a fence when a thread write to local will be readen by other thread. Not when that thread read and write to his local memory.

BTW fences are much better than barriers. In a barrier you force the threads to be in sync. This kills the performance in some cases.

I think you can rewrite your code to gain quite a lot in speed by changing the memory access model.

You can try if this works better (I made many obvious optimizations, without knowing what your code even is doing):

__kernel void squareGpuMatrixMul(__global float * v1, __global float * v2, __global float * v3) 
{
    int localRow = get_local_id(0); 
    int localCol = get_local_id(1);  
    int selectRowFromA = get_group_id(0)*32;     
    int selectColFromB = get_group_id(1)*32;     
    int lid= localCol*16+localRow; 
    __local float Lcache1[ 16][ 16]; 
    __local float Lcache2[ 16][ 16]; 
    __local float Lcache3[ 16][ 16]; 

    __local float Lcache1a[ 16][ 16]; 
    __local float Lcache2a[ 16][ 16]; 
    __local float Lcache3a[ 16][ 16]; 

    __local float Lcache1b[ 16][ 16]; 
    __local float Lcache2b[ 16][ 16]; 
    __local float Lcache3b[ 16][ 16]; 

    __local float Lcache1c[ 16][ 16]; 
    __local float Lcache2c[ 16][ 16]; 
    __local float Lcache3c[ 16][ 16]; 

    float tmp0=0.0f; 
    float tmp1=0.0f; 
    float tmp2=0.0f; 
    float tmp3=0.0f; 

    float tmp4=0.0f; 
    float tmp5=0.0f; 
    float tmp6=0.0f; 
    float tmp7=0.0f; 

    float sumPatch=0.0f; 
    float sumPatcha=0.0f; 
    float sumPatchb=0.0f; 
    float sumPatchc=0.0f; 
    float sumPatch2=0.0f; 
    float sumPatcha2=0.0f; 
    float sumPatchb2=0.0f; 
    float sumPatchc2=0.0f; 

    Lcache3[localRow][localCol]=0.0f; 
    Lcache3a[localRow][localCol]=0.0f; 
    Lcache3b[localRow][localCol]=0.0f; 
    Lcache3c[localRow][localCol]=0.0f; 
    for(int i=0;i<1024;i+=32)  // this is A's row and B's column parsed by sub-matrices
    { 
        Lcache1[localCol][localRow]=v1[selectRowFromA*1024+i+localCol+localRow*1024];
        Lcache2[localRow][localCol]=v2[selectColFromB*1024+i+localRow+localCol*1024];
        Lcache1a[localCol][localRow]=v1[selectRowFromA*1024+i+localCol+localRow*1024+ 16];
        Lcache2a[localRow][localCol]=v2[selectColFromB*1024+i+localRow+localCol*1024+ 16];
        Lcache1b[localCol][localRow]=v1[selectRowFromA*1024+i+localCol+localRow*1024+16384];
        Lcache2b[localRow][localCol]=v2[selectColFromB*1024+i+localRow+localCol*1024+16384];
        Lcache1c[localCol][localRow]=v1[selectRowFromA*1024+i+localCol+localRow*1024+ 16+16384];
        Lcache2c[localRow][localCol]=v2[selectColFromB*1024+i+localRow+localCol*1024+ 16+16384];
        mem_fence(CLK_LOCAL_MEM_FENCE);  
        sumPatch=0.0f; 
        sumPatcha=0.0f; 
        sumPatchb=0.0f; 
        sumPatchc=0.0f; 
        sumPatch2=0.0f; 
        sumPatcha2=0.0f; 
        sumPatchb2=0.0f; 
        sumPatchc2=0.0f; 
        for(int kk=0;kk< 16;kk++) //this is sub-matrix multiplication
        {   
            tmp0=Lcache1[kk][localRow];  // row-major
            tmp1=Lcache1a[kk][localRow]; // accesses
            tmp2=Lcache1b[kk][localRow]; //to local memory
            tmp3=Lcache1c[kk][localRow]; 
            tmp4=Lcache2[kk][localCol]; 
            tmp5=Lcache2a[kk][localCol]; 
            tmp6=Lcache2b[kk][localCol]; 
            tmp7=Lcache2c[kk][localCol]; 
            sumPatch+=tmp0*tmp4; 
            sumPatcha+=tmp0*tmp6; 
            sumPatchb+=tmp2*tmp4; 
            sumPatchc+=tmp2*tmp6; 
            sumPatch2+=tmp1*tmp5; 
            sumPatcha2+=tmp1*tmp7; 
            sumPatchb2+=tmp3*tmp5; 
            sumPatchc2+=tmp3*tmp7; 
        } 
        Lcache3[localRow][localCol]+=sumPatch+sumPatch2; 
        Lcache3a[localRow][localCol]+=sumPatcha+sumPatcha2; 
        Lcache3b[localRow][localCol]+=sumPatchb+sumPatchb2; 
        Lcache3c[localRow][localCol]+=sumPatchc+sumPatchc2; 
    } 
    mem_fence(CLK_LOCAL_MEM_FENCE); 
    v3[selectRowFromA*1024+selectColFromB+localCol+localRow*1024]=Lcache3[localRow][localCol];                   
    v3[selectRowFromA*1024+selectColFromB+localCol+localRow*1024+ 16]=Lcache3a[localRow][localCol];              
    v3[selectRowFromA*1024+selectColFromB+localCol+localRow*1024+16384]=Lcache3b[localRow][localCol];     
    v3[selectRowFromA*1024+selectColFromB+localCol+localRow*1024+ 16+16384]=Lcache3c[localRow][localCol];     

}


来源:https://stackoverflow.com/questions/18127541/matrix-multiplication-on-gpu-memory-bank-conflicts-and-latency-hiding

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!