问题
First of all, thanks in advance for any responses.
I need to obtain a table by joining some smaller tables in their respective web pages. To date, I've been capable of extracting the info, but failed to do it automatically using a loop. To date, my commands are:
library(RCurl)
library(XML)
# index <- toupper(letters)
# EDIT:
index <- LETTERS
index[1] <- "0-A"
url <- paste("www.citefactor.org/journal-impact-factor-list-2014_", index, ".html", sep="", collapse=";")
urls <- strsplit(url, ";") [[1]]
Here is my loop attempt:
read.html.tab <- function(url){
require(RCurl)
require(XML)
uri <- url
tabs <- NULL
for (i in uri){
tabs <- getURL(uri)
tabs <- readHTMLTable(tabs, stringsAsFactors = F)
tab1 <- as.data.frame(tabs)
}
tab1
}
If I try to use the read.html.tab
function:
tab0 <- read.html.tab(urls)
I get the following error:
Error in data.frame(`Search Journal Impact Factor List 2014` = list(`0-A` = "N", : arguments imply differing number of rows: 1, 1100, 447, 874, 169, 486, 201, 189, 172, 837....
However, if urls
has only one element, the function works:
tabA <- read.html.tab(urls[1])
tabB <- read.html.tab(urls[2])
tab.if <- rbind(tabA,tabB)
ifacs <- tab.if[,27:ncol(tab.if)]
View(ifacs)
It seems I'm not understanding how loops work...
回答1:
You could probably just scrap the for
loop completely and go with something like this:
Data <- lapply(urls, function(x){
readHTMLTable(
getURL(x),
stringsAsFactors=F)[[2]]
})
which will give you a lists of data.frame
s -
R> class(Data)
[1] "list"
R> length(Data)
[1] 26
R> head(Data[[1]])
INDEX JOURNAL ISSN 2013/2014 2012 2011 2010 2009 2008
1 1 4OR-A Quarterly Journal of Operations Research 1619-4500 0.918 0.73 0.323 0.69 0.75 -
2 2 Aaohn Journal 0891-0162 0.608 0.856 0.509 0.56 - -
3 3 Aapg Bulletin 0149-1423 1.832 1.768 1.831 1.964 1.448 1.364
4 4 AAPS Journal 1550-7416 3.905 4.386 5.086 3.942 3.54 -
5 5 Aaps Pharmscitech 1530-9932 1.776 1.584 1.432 1.211 1.19 1.445
6 6 Aatcc Review 1532-8813 0.254 0.354 0.139 0.315 0.293 0.352
I'm not sure if you wanted to combine it all into one object, but if so you can use do.call(rbind,Data)
. Also, I think each of these urls returned two tables, the first begin the search directory at the top of the page, which is why I used
readHTMLTable(
getURL(x),
stringsAsFactors=F)[[2]]
inside of lapply
, rather than
readHTMLTable(
getURL(x),
stringsAsFactors=F)
The latter would have returned a list of two tables for each url -
R> head(url1[[1]])
0-A  | B  | C  | D  | E  | F  | G  | H  | I  | J  | K  | L  | M  |
1 N  | O  | P  | Q  | R  | S  | T  | U  | V  | W  | X  | Y  | Z  |
##
R> head(url1[[2]])
INDEX JOURNAL ISSN 2013/2014 2012 2011 2010 2009 2008
1 1 4OR-A Quarterly Journal of Operations Research 1619-4500 0.918 0.73 0.323 0.69 0.75 -
2 2 Aaohn Journal 0891-0162 0.608 0.856 0.509 0.56 - -
3 3 Aapg Bulletin 0149-1423 1.832 1.768 1.831 1.964 1.448 1.364
4 4 AAPS Journal 1550-7416 3.905 4.386 5.086 3.942 3.54 -
5 5 Aaps Pharmscitech 1530-9932 1.776 1.584 1.432 1.211 1.19 1.445
6 6 Aatcc Review 1532-8813 0.254 0.354 0.139 0.315 0.293 0.352
回答2:
Obligatory Hadleyverse answer:
library(rvest)
library(dplyr)
library(magrittr)
library(pbapply)
urls <- sprintf("http://www.citefactor.org/journal-impact-factor-list-2014_%s.html",
c("0-A", LETTERS[-1]))
dat <- urls %>%
pblapply(function(url)
html(url) %>% html_table(header=TRUE) %>% extract2(2)) %>%
bind_rows()
glimpse(dat)
## Observations: 1547
## Variables:
## $ INDEX (int) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,...
## $ JOURNAL (chr) "4OR-A Quarterly Journal of Operations Researc...
## $ ISSN (chr) "1619-4500", "0891-0162", "0149-1423", "1550-7...
## $ 2013/2014 (chr) "0.918", "0.608", "1.832", "3.905", "1.776", "...
## $ 2012 (chr) "0.73", "0.856", "1.768", "4.386", "1.584", "0...
## $ 2011 (chr) "0.323", "0.509", "1.831", "5.086", "1.432", "...
## $ 2010 (chr) "0.69", "0.56", "1.964", "3.942", "1.211", "0....
## $ 2009 (chr) "0.75", "-", "1.448", "3.54", "1.19", "0.293",...
## $ 2008 (chr) "-", "-", "1.364", "-", "1.445", "0.352", "1.4...
rvest
gives us html
and html_table
I use magrittr
solely for extract2
, which just wraps [[
and reads better (IMO).
The pbapply
package wraps the *apply
functions and gives you free progress bars.
NOTE: bind_rows
is in the latest dplyr
, so grab that before using it.
来源:https://stackoverflow.com/questions/27882381/multiple-web-table-mining-with-r-rcurl