Dealing with “hypernormalized” data

隐身守侯 提交于 2019-12-23 12:45:51

问题


My employer, a small office supply company, is switching suppliers and I am looking through their electronic content to come up with a robust database schema; our previous schema was pretty much just thrown together without any thought at all, and it's pretty much led to an unbearable data model with corrupt, inconsistent information.

The new supplier's data is much better than the old one's, but their data is what I would call hypernormalized. For example, their product category structure has 5 levels: Master Department, Department, Class, Subclass, Product Block. In addition the product block content has the long description, search terms and image names for products (the idea is that a product block contains a product and all variations - e.g. a particular pen might come in black, blue or red ink; all of these items are essentially the same thing, so they apply to a single product block). In the data I've been given, this is expressed as the products table (I say "table" but it's a flat file with the data) having a reference to the product block's unique ID.

I am trying to come up with a robust schema to accommodate the data I'm provided with, since I'll need to load it relatively soon, and the data they've given me doesn't seem to match the type of data they provide for demonstration on their sample website (http://www.iteminfo.com). In any event, I'm not looking to reuse their presentation structure so it's a moot point, but I was browsing the site to get some ideas of how to structure things.

What I'm unsure of is whether or not I should keep the data in this format, or for example consolidate Master/Department/Class/Subclass into a single "Categories" table, using a self-referencing relationship, and link that to a product block (product block should be kept separate as it's not a "category" as such, but a group of related products for a given category). Currently, the product blocks table references the subclass table, so this would change to "category_id" if I consolidate them together.

I am probably going to be creating an e-commerce storefront making use of this data with Ruby on Rails (or that's my plan, at any rate) so I'm trying to avoid getting snagged later on or having a bloated application - maybe I'm giving it too much thought but I'd rather be safe than sorry; our previous data was a real mess and cost the company tens of thousands of dollars in lost sales due to inconsistent and inaccurate data. Also I am going to break from the Rails conventions a little by making sure that my database is robust and enforces constraints (I plan on doing it at the application level, too), so that's something I need to consider as well.

How would you tackle a situation like this? Keep in mind that I have the data to be loaded already in flat files that mimic a table structure (I have documentation saying which columns are which and what references are set up); I'm trying to decide if I should keep them as normalized as they currently are, or if I should look to consolidate; I need to be aware of how each method will affect the way I program the site using Rails since if I do consolidate, there will be essentially 4 "levels" of categories in a single table, but that definitely seems more manageable than separate tables for each level, since apart from Subclass (which directly links to product blocks) they don't do anything except show the next level of category under them. I'm always a loss for the "best" way to handle data like this - I know of the saying "Normalize until it hurts, then denormalize until it works" but I've never really had to implement it until now.


回答1:


I would prefer the "hypernormalized" approach over a denormal data model. The self referencing table you mentioned might reduce the number of tables down and simplify life in some ways, but in general this type of relationship can be tricky to deal with. Hierarchical queries become a pain, as does mapping an object model to this (if you decide to go that route).

A couple of extra joins is not going to hurt and will keep the application more maintainable. Unless performance degrades due to the excessive number of joins, I would opt to leave things like they are. As an added bonus if any of these levels of tables needed additional functionality added, you will not run into issues because you merged them all into the self referencing table.




回答2:


I totally disagree with the criticisms about self-referencing table structures for parent-child hierarchies. The linked list structure makes UI and business layer programming easier and more maintainable in most cases, since linked lists and trees are the natural way to represent this data in languages that the UI and business layers would typically be implemented in.

The criticism about the difficulty of maintaining data integrity constraints on these structures is perfectly valid, though the simple solution is to use a closure table that hosts the harder check constraints. The closure table is easily maintained with triggers.

The tradeoff is a little extra complexity in the DB (closure table and triggers) for a lot less complexity in UI and business layer code.




回答3:


If I understand correctly, you want to take their separate tables and turn them into a hierarchy that's kept in a single table with a self-referencing FK.

This is generally a more flexible approach (for example, if you want to add a fifth level), BUT SQL and relational data models don't tend to work well with linked lists like this, even with new syntax like MS SQL Servers CTEs. Admittedly, CTEs make it much better though.

It can be difficult and costly to enforce things, like that a product must always be on the fourth level of the hierarchy, etc.

If you do decide to do it this way, then definitely check out Joe Celko's SQL for Smarties, which I believe has a section or two on modeling and working with hierarchies in SQL or better yet get his book that is devoted to the subject (Joe Celko's Trees and Hierarchies in SQL for Smarties).




回答4:


Normalization implies data integrity, that is: each normal form reduces the number of situations where you data is inconsistent.

As a rule, denormalization has a goal of faster querying, but leads to increased space, increased DML time, and, last but not least, increased efforts to make data consistent.

One usually writes code faster (writes faster, not the code faster) and the code is less prone to errors if the data is normalized.




回答5:


Self referencing tables almost always turn out to be much worse to query and perform worse than normalized tables. Don't do it. It may look to you to be more elegant, but it is not and is a very poor database design technique. Personally the structure you described sounds just fine to me not hypernormalized. A properly normalized database (with foreign key constraints as well as default values, triggers (if needed for complex rules) and data validation constraints) is also far likelier to have consistent and accurate data. I agree about having the database enforce the rules, likely this is part of why the last application had bad data because the rules were not enforced in the proper place and people were able to easily get around them. Not that the application shouldn't check as well (no point even sending an invalid date for instance for the datbase to fail on insert). Since youa redesigning, I would put more time and effort into designing the necessary constraints and choosing the correct data types (do not store dates as string data for instance), than in trying to make the perfectly ordinary normalized structure look more elegant.




回答6:


I would bring it in as close to their model as possible (and if at all possible, I would get files which match their schema - not a flattened version). If you bring the data directly into your model, what happens if data they send starts to break assumptions in the transformation to your internal application's model?

Better to bring their data in, run sanity checks and check that assumptions are not violated. Then if you do have an application-specific model, transform it into that for optimal use by your application.




回答7:


Don't denormalize. Trying to acheive a good schema design by denormalizing is like trying to get to San Francisco by driving away from New York. It doesn't tell you which way to go.

In your situation, you want to figure out what a normalized schema would like. You can base that largely on the source schema, but you need to learn what the functional dependencies (FD) in the data are. Neither the source schema nor the flattened files are guaranteed to reveal all the FDs to you.

Once you know what a normalized schema would look like, you now need to figure out how to design a schema that meets your needs. It that schema is somewhat less than fully normalized, so be it. But be prepared for difficulties in programming the transformation between the data in the flattened files and the data in your desgined schema.

You said that previous schemas at your company cost millions due to inconsistency and inaccuracy. The more normalized your schema is, the more protected you are from internal inconsistency. This leaves you free to be more vigilant about inaccuracy. Consistent data that's consistently wrong can be as misleading as inconsistent data.




回答8:


is your storefront (or whatever it is you're building, not quite clear on that) always going to be using data from this supplier? might you ever change suppliers or add additional different suppliers?

if so, design a general schema that meets your needs, and map the vendor data to it. Personally I'd rather suffer the (incredibly minor) 'pain' of a self-referencing Category (hierarchical) table than maintain four (apparently semi-useless) levels of Category variants and then next year find out they've added a 5th, or introduced a product line with only three...




回答9:


For me, the real question is: what fits the model better?

It's like comparing a Tuple and a List.

  1. Tuples are a fixed size and are heterogeneous -- they are "hypernormalized".
  2. Lists are an arbitrarty size and are homogeneous.

I use a Tuple when I need a Tuple and a List when I need a list; they fundamentally server different purposes.

In this case, since the product structure is already well defined (and I assume not likely to change) then I would stick with the "Tuple approach". The real power/use of a List (or recursive table pattern) is when you need it to expand to an arbitrary depth, such as for a BOM or a genealogy tree.

I use both approaches in some of my database depending upon the need. However, there is also the "hidden cost" of a recursive pattern which is that not all ORMs (not sure about AR) support it well. Many modern DBs have support for "join-throughs" (Oracle), hierarchy IDs (SQL Server) or other recursive patterns. Another approach is to use a set-based hierarchy (which generally relies on triggers/maintenance). In any case, if the ORM used does not support recursive queries well, then there may be the extra "cost" of using the to the DB features directly -- either in terms of manual query/view generation or management such as triggers. If you don't use a funky ORM, or simply use a logic separator such as iBatis, then this issue may not even apply.

As far as performance, on new Oracle or SQL Server (and likely others) RDBMS, it ought to be very comparable so that would be the least of my worries: but check out the solutions available for your RDBMS and portability concerns.




回答10:


Everybody who recommends you not to have a hierarchy introduced in the database, considering just the option of having a self-referenced table. This is not the only way to model the hierarchy in the database. You may use a different approach, that provides you with easier and faster querying without using recursive queries. Let's say you have a big set of nodes (categories) in your hierarchy:

Set1 = (Node1 Node2 Node3...)

Any node in this set can also be another set by itself, that contains other nodes or nested sets:

Node1=(Node2 Node3=(Node4 Node5=(Node6) Node7))

Now, how we can model that? Let's have each node to have two attributes, that set the boundaries of the nodes it contains:

Node = { Id: int, Min: int, Max: int }

To model our hierarchy, we just assign those min/max values accordingly:

Node1 = { Id = 1, Min = 1, Max = 10 }
Node2 = { Id = 2, Min = 2, Max = 2 }
Node3 = { Id = 3, Min = 3, Max = 9 }
Node4 = { Id = 4, Min = 4, Max = 4 }
Node5 = { Id = 5, Min = 5, Max = 7 }
Node6 = { Id = 6, Min = 6, Max = 6 }
Node7 = { Id = 7, Min = 8, Max = 8 }

Now, to query all nodes under the Set/Node5:

select n.* from Nodes as n, Nodes as s
where s.Id = 5 and s.Min < n.Min and n.Max < s.Max

The only resource-consuming operation would be if you want to insert a new node, or move some node within the hierarchy, as many records will be affected, but this is fine, as the hierarchy itself does not change very often.



来源:https://stackoverflow.com/questions/507671/dealing-with-hypernormalized-data

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!