How to plot mixed-effects model estimates in ggplot2 in R?

隐身守侯 提交于 2019-12-22 17:28:15

问题


I have a 2x2x2 factorial design with one random effect. The data (dat) is as follows:

  colour  size  level   marbles set
  Blue    Large Low     80      1
  Blue    Large High    9       2
  Blue    Small Low     91      1
  Blue    Small High    2       1 
  White   Large Low     80      2
  White   Large High    9       1
  White   Small Low     91      2
  White   Small High    2       1

I want to plot two models:

mod1 <- lmer(marbles ~ colour + size + level + colour:size + colour:level + size:level + (1|set), data = dat)

mod2 <- lmer(marbles ~ colour + size + level +(1|set), data = dat)

I usually use the following code to do my plots:

pd <- position_dodge(0.82)
  ggplot(dat, aes(x=colour, y=marbles, fill = level)) + theme_bw() + 
  stat_summary(geom="bar", fun.y=mean, position = "dodge") +  
  stat_summary(geom="errorbar", fun.data=mean_cl_boot, position = pd)+
  + facet_grid(~size)

I'm unsure on how to replace the terms with coefficients from the model estimates. Any ideas on how can I plot the estimates of the final model in gpplot2? It would be helpful if anyone can suggest a easy way to print the model estimates too

In addition, is there anyway that I can get ggplot2 to display bars on top of the graphs showing interactions that are significant?


回答1:


Here's one approach to plotting predictions from a linear mixed effects model for a factorial design. You can access the fixed effects coefficient estimates with fixef(...) or coef(summary(...)). You can access the random effects estimates with ranef(...).

library(lme4)
mod1 <- lmer(marbles ~ colour + size + level + colour:size + colour:level + size:level + (1|set), data = dat)
mod2 <- lmer(marbles ~ colour + size + level +(1|set), data = dat)

dat$preds1 <- predict(mod1,type="response")
dat$preds2 <- predict(mod2,type="response")

dat<-melt(dat,1:5)

pred.plot <- ggplot() +
  geom_point(data = dat, aes(x = size, y = value, 
                            group = interaction(factor(level),factor(colour)),
                            color=factor(colour),shape=variable)) +
  facet_wrap(~level) +
  labs(x="Size",y="Marbles")

These are fixed effects predictions for the data you presented in your post. Points for the colors are overlapping, but that will depend on the data included in the model. Which combination of factors you choose to represent via the axes, facets, or shapes may shift the visual emphasis of the graph.



来源:https://stackoverflow.com/questions/45677536/how-to-plot-mixed-effects-model-estimates-in-ggplot2-in-r

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!