Spark Config Files

China☆狼群 提交于 2019-12-22 10:19:45

问题


Can someone share with me the spark-env.sh and spark-default.conf file content which needs to be set to run Spark on YARN as client or cluster ?

Also should i store spark_assembly jar to the HDFS and then create a environment variable in the ~/.bashrc file ?

I am unable to start my spark-shell with --master yarn-client command. Please help !!

Update

**Daemon in NN1 :**
2945 JournalNode
3137 DFSZKFailoverController
6385 Jps
3338 NodeManager
22730 QuorumPeerMain
2747 DataNode
3228 ResourceManager
2636 NameNode

**Daemon in NN2** 
19620 Jps
3894 QuorumPeerMain
16966 ResourceManager
16808 NodeManager
16475 DataNode
16572 JournalNode
17101 NameNode
16702 DFSZKFailoverController

**Daemon in DN1**
12228 QuorumPeerMain
29060 NodeManager
28858 DataNode
29644 Jps
28956 JournalNode

I am able to invoke spark shell in Stand-alone mode by issuing the following command in terminal

$spark-shell

But when i try to run the spark-shell in YARN as client then i get the error message

$spark-shell --master yarn-client  ---> This command throws out error.

My Setup Files for verification :

Spark-env.sh

#export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/etc/hadoop"} - I have tried both ways 
export HADOOP_CONF_DIR=/usr/local/hadoop/hadoop-2.7.2/etc/hadoop
export SPARK_YARN_QUEUE=default
export SPARK_MASTER_IP=ptfhadoop01v
export SPARK_WORKER_CORES=2
export SPARK_WORKER_MEMORY=500mb
export SPARK_WORKER_INSTANCES=2

yarn-site.xml

<configuration>

<!-- Site specific YARN configuration properties -->

  <property>
       <name>yarn.nodemanager.aux-services</name>
       <value>mapreduce_shuffle</value>
  </property>
  <property>
       <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
       <value>org.apache.hadoop.mapred.ShuffleHandler</value>
  </property>
  <property>
       <name>yarn.resourcemanager.ha.enabled</name>
       <value>true</value>
  </property>

  <property>
       <name>yarn.resourcemanager.ha.rm-ids</name>
       <value>ptfhadoop01v,ntpcam01v</value>
  </property>

  <property>
       <name>yarn.resourcemanager.hostname.ptfhadoop01v</name>
       <value>ptfhadoop01v</value>
  </property>

  <property>
       <name>yarn.resourcemanager.hostname.ntpcam01v</name>
       <value>ntpcam01v</value>
  </property>

  <property>
       <name>yarn.resourcemanager.recovery.enabled</name>
       <value>true</value>
  </property>

  <property>
       <name>yarn.resourcemanager.store.class</name>
       <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
  </property>

  <property>
       <name>yarn.resourcemanager.zk-address</name>
       <value>ptfhadoop01v:2181,ntpcam01v:2181,ntpcam03v:2181</value>
       <description>For multiple zk services, separate them with comma</description>
  </property>

  <property>
       <name>yarn.client.failover-proxy-provider</name>
       <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
  </property>

  <property>
       <name>yarn.resourcemanager.ha.automatic-failover.zk-base-path</name>
       <value>/yarn-leader-election</value>
  </property>

  <property>
      <name>yarn.resourcemanager.cluster-id</name>
      <value>yarn-cluster</value>
  </property>
</configuration>

I have NOT setup any property in my spark-defaults.conf file.I am not sure if we need to setup any property in here to make it work.

When trying to launch the spark in yarn-client mode i see the following error ,

[hduser@ptfhadoop01v spark-1.6.0]$ spark-shell --master yarn-client --conf   spark.yarn.jar=hdfs://ptfhadoop01v:8020/user/spark/share/lib/spark-assembly.jar
16/04/08 09:21:31 WARN NativeCodeLoader: Unable to load native-hadoop  library for your platform... using builtin-java classes where applicable
Welcome to
  ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.0
      /_/

Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_71)
Type in expressions to have them evaluated.
Type :help for more information.
16/04/08 09:21:37 WARN SparkConf:
SPARK_WORKER_INSTANCES was detected (set to '2').
This is deprecated in Spark 1.0+.

Please instead use:
 - ./spark-submit with --num-executors to specify the number of executors
 - Or set SPARK_EXECUTOR_INSTANCES
 - spark.executor.instances to configure the number of instances in the  spark config.

16/04/08 09:21:39 WARN YarnClientSchedulerBackend: NOTE: SPARK_WORKER_MEMORY is deprecated. Use SPARK_EXECUTOR_MEMORY or --executor-memory through spark-submit instead.
16/04/08 09:21:39 WARN YarnClientSchedulerBackend: NOTE: SPARK_WORKER_CORES is deprecated. Use SPARK_EXECUTOR_CORES or --executor-cores through spark-submit instead.
16/04/08 09:22:12 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
    at     org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:124)
    at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:64)
    at   org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
    at org.apache.spark.SparkContext.<init>(SparkContext.scala:530)
    at   org.apache.spark.repl.SparkILoop.createSparkContext(SparkILoop.scala:1017)
    at $line3.$read$$iwC$$iwC.<init>(<console>:15)
    at $line3.$read$$iwC.<init>(<console>:24)
    at $line3.$read.<init>(<console>:26)
    at $line3.$read$.<init>(<console>:30)
    at $line3.$read$.<clinit>(<console>)
    at $line3.$eval$.<init>(<console>:7)
    at $line3.$eval$.<clinit>(<console>)
    at $line3.$eval.$print(<console>)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at    sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at   sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at   org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
    at   org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346)
    at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
    at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
    at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
    at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
    at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
    at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
    at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:125)
    at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:124)
    at org.apache.spark.repl.SparkIMain.beQuietDuring(SparkIMain.scala:324)
    at org.apache.spark.repl.SparkILoopInit$class.initializeSpark(SparkILoopInit.scala:124)
    at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:64)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1$$anonfun$apply$mcZ$sp$5.apply$mcV$sp(SparkILoop.scala:974)
    at org.apache.spark.repl.SparkILoopInit$class.runThunks(SparkILoopInit.scala:159)
    at org.apache.spark.repl.SparkILoop.runThunks(SparkILoop.scala:64)
    at org.apache.spark.repl.SparkILoopInit$class.postInitialization(SparkILoopInit.scala:108)
    at org.apache.spark.repl.SparkILoop.postInitialization(SparkILoop.scala:64)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:991)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
    at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
    at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
    at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
    at org.apache.spark.repl.Main$.main(Main.scala:31)
    at org.apache.spark.repl.Main.main(Main.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
16/04/08 09:22:12 WARN MetricsSystem: Stopping a MetricsSystem that is not running
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
    at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:124)
    at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:64)
    at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
    at org.apache.spark.SparkContext.<init>(SparkContext.scala:530)
    at org.apache.spark.repl.SparkILoop.createSparkContext(SparkILoop.scala:1017)
    at $iwC$$iwC.<init>(<console>:15)
    at $iwC.<init>(<console>:24)
    at <init>(<console>:26)
    at .<init>(<console>:30)
    at .<clinit>(<console>)
    at .<init>(<console>:7)
    at .<clinit>(<console>)
    at $print(<console>)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
    at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346)
    at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
    at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
    at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
    at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
    at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
    at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
    at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:125)
    at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:124)
    at org.apache.spark.repl.SparkIMain.beQuietDuring(SparkIMain.scala:324)
    at org.apache.spark.repl.SparkILoopInit$class.initializeSpark(SparkILoopInit.scala:124)
    at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:64)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1$$anonfun$apply$mcZ$sp$5.apply$mcV$sp(SparkILoop.scala:974)
    at org.apache.spark.repl.SparkILoopInit$class.runThunks(SparkILoopInit.scala:159)
    at org.apache.spark.repl.SparkILoop.runThunks(SparkILoop.scala:64)
    at org.apache.spark.repl.SparkILoopInit$class.postInitialization(SparkILoopInit.scala:108)
    at org.apache.spark.repl.SparkILoop.postInitialization(SparkILoop.scala:64)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:991)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
    at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
    at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
    at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
    at org.apache.spark.repl.Main$.main(Main.scala:31)
    at org.apache.spark.repl.Main.main(Main.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

java.lang.NullPointerException
    at   org.apache.spark.sql.SQLContext$.createListenerAndUI(SQLContext.scala:1367)
    at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:101)
    at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
    at  sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
    at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
    at java.lang.reflect.Constructor.newInstance(Constructor.java:422)
    at org.apache.spark.repl.SparkILoop.createSQLContext(SparkILoop.scala:1028)
    at $iwC$$iwC.<init>(<console>:15)
    at $iwC.<init>(<console>:24)
    at <init>(<console>:26)
    at .<init>(<console>:30)
    at .<clinit>(<console>)
    at .<init>(<console>:7)
    at .<clinit>(<console>)
    at $print(<console>)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
    at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346)
    at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
    at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
    at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
    at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
    at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
    at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
    at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:132)
    at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:124)
    at org.apache.spark.repl.SparkIMain.beQuietDuring(SparkIMain.scala:324)
    at org.apache.spark.repl.SparkILoopInit$class.initializeSpark(SparkILoopInit.scala:124)
    at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:64)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1$$anonfun$apply$mcZ$sp$5.apply$mcV$sp(SparkILoop.scala:974)
    at org.apache.spark.repl.SparkILoopInit$class.runThunks(SparkILoopInit.scala:159)
    at org.apache.spark.repl.SparkILoop.runThunks(SparkILoop.scala:64)
    at org.apache.spark.repl.SparkILoopInit$class.postInitialization(SparkILoopInit.scala:108)
    at org.apache.spark.repl.SparkILoop.postInitialization(SparkILoop.scala:64)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:991)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
    at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
    at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
    at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
    at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
    at org.apache.spark.repl.Main$.main(Main.scala:31)
    at org.apache.spark.repl.Main.main(Main.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
    at   org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

<console>:16: error: not found: value sqlContext
     import sqlContext.implicits._
            ^
<console>:16: error: not found: value sqlContext
     import sqlContext.sql
            ^

    scala>

来源:https://stackoverflow.com/questions/36472113/spark-config-files

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!