Description:
Love you Ten thousand years------Earth’s rotation is a day that is the representative of a day I love you. True love, there is no limit and no defects. Earth’s revolution once a year, it is on behalf of my love you more than a year. Permanent horizon, and my heart will never change ……
We say that integer ( is a odd prime number) is a LovePoint-based-on n if and only if the set is equal to . For example, the powers of modulo are , and thus is a LovePoint-based-on .
Now give you a integer ( will not exceed ).
We say the number of LovePoint-based-on n is the number of days the earth rotating.
Your task is to calculate the number of days someone loved you.
Input
Each line of the input contains an integer . Input is terminated by the end-of-file.
Output
For each , print a single number that gives the number of days someone loved you.
Sample Input
5
Sample Output
2
求有多少,使 的值为 ,其实也就是满足完全剩余类的原根数量。
设 且 , 则使得 成立的最小的正整数 称为 对模的阶, 记为。
如果 的阶为, 则称 为 的一个原根。 即若 , 则称为 的一个原根。
定理1:若 是 的一个原根,则
各数对模 的最小剩余,恰是小于 且与 互素的 个正整数的一个排列。
定理2:每一个素数 都有 个原根。 为小于 的素数的个数,事实上, 每一个数 都有 个原根(如果有的话)。即 若 为素数
这个题中 为奇素数,故形成的为完全剩余系。求 的原根数量即可。
AC代码:
#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
using namespace std;
#define sd(n) scanf("%d", &n)
#define sdd(n, m) scanf("%d%d", &n, &m)
#define sddd(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define pd(n) printf("%d\n", n)
#define pc(n) printf("%c", n)
#define pdd(n, m) printf("%d %d", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n, m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld", &n)
#define sldd(n, m) scanf("%lld%lld", &n, &m)
#define slddd(n, m, k) scanf("%lld%lld%lld", &n, &m, &k)
#define sf(n) scanf("%lf", &n)
#define sc(n) scanf("%c", &n)
#define sff(n, m) scanf("%lf%lf", &n, &m)
#define sfff(n, m, k) scanf("%lf%lf%lf", &n, &m, &k)
#define ss(str) scanf("%s", str)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
#define mem(a, n) memset(a, n, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define mod(x) ((x) % MOD)
#define gcd(a, b) __gcd(a, b)
#define lowbit(x) (x & -x)
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int MOD = 1e9 + 7;
const double eps = 1e-9;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
inline int read()
{
int ret = 0, sgn = 1;
char ch = getchar();
while (ch < '0' || ch > '9')
{
if (ch == '-')
sgn = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9')
{
ret = ret * 10 + ch - '0';
ch = getchar();
}
return ret * sgn;
}
inline void Out(int a)
{
if (a > 9)
Out(a / 10);
putchar(a % 10 + '0');
}
ll gcd(ll a, ll b)
{
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
return a * b / gcd(a, b);
}
///快速幂m^k%mod
ll qpow(int m, int k, int mod)
{
ll res = 1, t = m;
while (k)
{
if (k & 1)
res = res * t % mod;
t = t * t % mod;
k >>= 1;
}
return res;
}
// 快速幂求逆元
int Fermat(int a, int p) //费马求a关于b的逆元
{
return qpow(a, p - 2, p);
}
///扩展欧几里得
int exgcd(int a, int b, int &x, int &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
int g = exgcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
return g;
}
///使用ecgcd求a的逆元x
int mod_reverse(int a, int p)
{
int d, x, y;
d = exgcd(a, p, x, y);
if (d == 1)
return (x % p + p) % p;
else
return -1;
}
///中国剩余定理模板
ll china(int a[], int b[], int n) //a[]为除数,b[]为余数
{
int M = 1, y, x = 0;
for (int i = 0; i < n; ++i) //算出它们累乘的结果
M *= a[i];
for (int i = 0; i < n; ++i)
{
int w = M / a[i];
int tx = 0;
int t = exgcd(w, a[i], tx, y); //计算逆元
x = (x + w * (b[i] / t) * x) % M;
}
return (x + M) % M;
}
ll phi(ll n)
{
ll ans = n;
for (int i = 2; i * i <= n; i++)
{
if (n % i == 0)
{
ans -= ans / i;//素数倍数的个数减去
while (n % i == 0)
n /= i;//除去素数倍数
}
}
if (n > 1)//对素数特判
ans -= ans / n;
return ans;
}//互素数的个数
ll n, m;
int main()
{
while (~sld(n))
{
pld(phi(phi(n)));
}
return 0;
}
来源:CSDN
作者:邵光亮
链接:https://blog.csdn.net/qq_43627087/article/details/103639217