Tensorflow : how to insert custom input to existing graph?

天大地大妈咪最大 提交于 2019-12-21 02:45:57

问题


I have downloaded a tensorflow GraphDef that implements a VGG16 ConvNet, which I use doing this :

Pl['images'] = tf.placeholder(tf.float32, 
                          [None, 448, 448, 3],
                          name="images") #batch x width x height x channels
with open("tensorflow-vgg16/vgg16.tfmodel", mode='rb') as f: 
    fileContent = f.read()

graph_def = tf.GraphDef()
graph_def.ParseFromString(fileContent)
tf.import_graph_def(graph_def, input_map={"images": Pl['images']})

Besides, I have image features that are homogeneous to the output of the "import/pool5/".

How can I tell my graph that don't want to use his input "images", but the tensor "import/pool5/" as input ?

Thank's !

EDIT

OK I realize I haven't been very clear. Here is the situation:

I am trying to use this implementation of ROI pooling, using a pre-trained VGG16, which I have in the GraphDef format. So here is what I do:

First of all, I load the model:

tf.reset_default_graph()
with open("tensorflow-vgg16/vgg16.tfmodel",
          mode='rb') as f:
    fileContent = f.read()
graph_def = tf.GraphDef()
graph_def.ParseFromString(fileContent)
graph = tf.get_default_graph()

Then, I create my placeholders

images = tf.placeholder(tf.float32, 
                              [None, 448, 448, 3],
                              name="images") #batch x width x height x channels
boxes = tf.placeholder(tf.float32, 
                             [None,5], # 5 = [batch_id,x1,y1,x2,y2]
                             name = "boxes")

And I define the output of the first part of the graph to be conv5_3/Relu

tf.import_graph_def(graph_def, 
                    input_map={'images':images})
out_tensor = graph.get_tensor_by_name("import/conv5_3/Relu:0")

So, out_tensor is of shape [None,14,14,512]

Then, I do the ROI pooling:

[out_pool,argmax] = module.roi_pool(out_tensor,
                                    boxes,
                                    7,7,1.0/1) 

With out_pool.shape = N_Boxes_in_batch x 7 x 7 x 512, which is homogeneous to pool5. I would then like to feed out_pool as an input to the op that comes just after pool5, so it would look like

tf.import_graph_def(graph.as_graph_def(),
                    input_map={'import/pool5':out_pool})

But it doesn't work, I have this error:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-89-527398d7344b> in <module>()
      5 
      6 tf.import_graph_def(graph.as_graph_def(),
----> 7                     input_map={'import/pool5':out_pool})
      8 
      9 final_out = graph.get_tensor_by_name("import/Relu_1:0")

/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/importer.py in import_graph_def(graph_def, input_map, return_elements, name, op_dict)
    333       # NOTE(mrry): If the graph contains a cycle, the full shape information
    334       # may not be available for this op's inputs.
--> 335       ops.set_shapes_for_outputs(op)
    336 
    337       # Apply device functions for this op.

/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/ops.py in set_shapes_for_outputs(op)
   1610       raise RuntimeError("No shape function registered for standard op: %s"
   1611                          % op.type)
-> 1612   shapes = shape_func(op)
   1613   if len(op.outputs) != len(shapes):
   1614     raise RuntimeError(

/home/hbenyounes/vqa/roi_pooling_op_grad.py in _roi_pool_shape(op)
     13   channels = dims_data[3]
     14   print(op.inputs[1].name, op.inputs[1].get_shape())
---> 15   dims_rois = op.inputs[1].get_shape().as_list()
     16   num_rois = dims_rois[0]
     17 

/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/tensor_shape.py in as_list(self)
    745       A list of integers or None for each dimension.
    746     """
--> 747     return [dim.value for dim in self._dims]
    748 
    749   def as_proto(self):

TypeError: 'NoneType' object is not iterable

Any clue ?


回答1:


What I would do is something along those lines:

-First retrieve the names of the tensors representing the weights and biases of the 3 fully connected layers coming after pool5 in VGG16.
To do that I would inspect [n.name for n in graph.as_graph_def().node]. (They probably look something like import/locali/weight:0, import/locali/bias:0, etc.)

-Put them in a python list:

weights_names=["import/local1/weight:0" ,"import/local2/weight:0" ,"import/local3/weight:0"]
biases_names=["import/local1/bias:0" ,"import/local2/bias:0" ,"import/local3/bias:0"]

-Define a function that look something like:

def pool5_tofcX(input_tensor, layer_number=3):
  flatten=tf.reshape(input_tensor,(-1,7*7*512))
  tmp=flatten
  for i in xrange(layer_number):
    tmp=tf.matmul(tmp, graph.get_tensor_by_name(weights_name[i]))
    tmp=tf.nn.bias_add(tmp, graph.get_tensor_by_name(biases_name[i]))
    tmp=tf.nn.relu(tmp)
  return tmp

Then define the tensor using the function:

wanted_output=pool5_tofcX(out_pool) 

Then you are done !




回答2:


It is usually very convenient to use tf.train.export_meta_graph to store the whole MetaGraph. Then, upon restoring you can use tf.train.import_meta_graph, because it turns out that it passes all additional arguments to the underlying import_scoped_meta_graph which has the input_map argument and utilizes it when it gets to it's own invocation of import_graph_def.

It is not documented, and took me waaaay toooo much time to find it, but it works!




回答3:


Jonan Georgiev provided an excellent answer here. The same approach was also described with little fanfare at the end of this git issue: https://github.com/tensorflow/tensorflow/issues/3389

Below is a copy/paste runnable example of using this approach to switch out a placeholder for a tf.data.Dataset get_next tensor.

import tensorflow as tf


my_placeholder = tf.placeholder(dtype=tf.float32, shape=1, name='my_placeholder')
my_op = tf.square(my_placeholder, name='my_op')

# Save the graph to memory
graph_def = tf.get_default_graph().as_graph_def()

print('----- my_op before any remapping -----')
print([n for n in graph_def.node if n.name == 'my_op'])

tf.reset_default_graph()

ds = tf.data.Dataset.from_tensors(1.0)
next_tensor = tf.data.make_one_shot_iterator(ds).get_next(name='my_next_tensor')

# Restore the graph with a custom input mapping
tf.graph_util.import_graph_def(graph_def, input_map={'my_placeholder': next_tensor}, name='')

print('----- my_op after remapping -----')
print([n for n in tf.get_default_graph().as_graph_def().node if n.name == 'my_op'])

Output, where we can clearly see that the input to the square operation has changed.

----- my_op before any remapping -----
[name: "my_op"
op: "Square"
input: "my_placeholder"
attr {
  key: "T"
  value {
    type: DT_FLOAT
  }
}
]

----- my_op after remapping -----
[name: "my_op"
op: "Square"
input: "my_next_tensor"
attr {
  key: "T"
  value {
    type: DT_FLOAT
  }
}
]


来源:https://stackoverflow.com/questions/38618960/tensorflow-how-to-insert-custom-input-to-existing-graph

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!