k-means算法是无监督学习方法的经典算法之一,也是最简单的一个。
其中我们需要选择一种距离度量来表示数据点之间的距离,本文中我们使用的是欧式距离。
一、k均值聚类算法
1.支持函数
import numpy as np
def loadDataSet(fileName):
"""
函数说明:加载数据
Parameters:
fileName - 文件名
Returns:
dataMat - 数据矩阵
"""
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = list(map(float, curLine)) # 转化为float类型
dataMat.append(fltLine)
return np.array(dataMat)
def distEclud(vecA, vecB):
"""
函数说明:欧拉距离
parameters:
vecA,vecB:两个数据点的特征向量
returns:
欧式距离
"""
return np.sqrt(np.sum(np.power(vecA - vecB, 2)))
def randCent(dataSet, k):
"""
函数说明:
:param dataSet: 数据矩阵
:param k: 最终分类的个数
:return: centroids:一个包含k个随机质心的集合
"""
# n为特征值个数
n = np.shape(dataSet)[1]
centroids = np.mat(np.zeros((k, n)))
for j in range(n):
# minJ为特征值最小值,rangeJ为特征值取值范围
minJ = min(dataSet[:, j])
rangeJ = float(max(dataSet[:, j]) - minJ)
centroids[:, j] = np.mat(minJ + rangeJ * np.random.rand(k, 1))
return centroids
为了测试一下randCent
函数,输入以下命令:
arr = np.eye(5)
result = randCent(arr,6)
print(result)
得到以下结果:
[[ 0.05560545 0.81041864 0.79611652 0.9373905 0.08548578]
[ 0.42075168 0.86751914 0.66679966 0.57616285 0.13381111]
[ 0.46620813 0.2056531 0.35411902 0.10988056 0.51711511]
[ 0.48553254 0.38452667 0.3622934 0.85310448 0.4792246 ]
[ 0.81550174 0.75100062 0.99734453 0.22288111 0.30330208]
[ 0.61745704 0.13374273 0.91897972 0.13062757 0.79268968]]
可见randCent
函数可以实现构建一个包含k个随机质心的集合的功能。
为了测试加载函数和distEclud
函数,运行以下命令:
datamat = loadDataSet("E:\学习资料\机器学习算法刻意练习\机器学习实战书电子版\machinelearninginaction\Ch10\\testSet.txt")
dataMat = np.array(datamat)
result = distEclud(dataMat[0],dataMat[1])
print(result)
得到以下结果
5.18463281668
可见所有的支持函数均可正常运行。
2.KMeans聚类算法
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
"""
函数说明:kMeans算法的实现
:param dataSet:数据矩阵
:param k:待分类的类别数
:param distMeas:度量距离的公式
:param createCent:随机创建的初始点
:return:
centroids:聚类中心
clusterAssment:聚类结果
"""
m = np.shape(dataSet)[0]
# clusterAssment用来存储聚类中心
clusterAssment = np.mat(np.zeros((m,2)))
centroids = createCent(dataSet, k)
# clusterChanged用来判断算法是否收敛
clusterChanged = True
while clusterChanged:
clusterChanged = False
# 遍历所有数据,将其分入最近的聚类中心中
for i in range(m):
# minIndex记录该点属于的类别
minDist = float(math.inf)
minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI
minIndex = j
# # 判断是否收敛
if clusterAssment[i, 0] != minIndex: clusterChanged = True
clusterAssment[i, :] = minIndex, minDist**2
# 重新计算聚类中心
for cent in range(k):
ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]]
centroids[cent, :] = np.mean(ptsInClust, axis=0)
return centroids, clusterAssment
运行结果为:
[[-3.53973889 -2.89384326]
[ 2.6265299 3.10868015]
[ 2.65077367 -2.79019029]
[-2.46154315 2.78737555]]
[[ 1. 2.3201915 ]
[ 3. 1.39004893]
[ 2. 7.46974076]
[ 0. 3.60477283]
[ 1. 2.7696782 ]
[ 3. 2.80101213]
[ 2. 5.10287596]
[ 0. 1.37029303]
[ 1. 2.29348924]
[ 3. 0.64596748]
[ 2. 1.72819697]
[ 0. 0.60909593]
[ 1. 2.51695402]
[ 3. 0.13871642]
...
[ 0. 1.11099937]
[ 1. 0.07060147]
[ 3. 0.2599013 ]
[ 2. 4.39510824]
[ 0. 1.86578044]]
可见以上算法成功将数据集testSet
分为了四类。
二、二分 K-均值算法
为克服K-均值算法收敛于局部最小值的问题,我们介绍另一个称为二分K-均值(bisecting
K-means)的算法。
其伪代码形式如下:
二分算法biKmeans
的具体实现如下:
def biKmeans(dataSet, k, distMeas=distEclud):
"""
函数说明:二分KMeans算法
:param dataSet:数据矩阵
:param k: 分类个数
:param distMeas: 距离度量方式
:return:
np.mat(centList):聚类中心
clusterAssment:数据的分类结果
"""
m = np.shape(dataSet)[0]
clusterAssment = np.mat(np.zeros((m, 2)))
centroid0 = np.mean(dataSet, axis=0).tolist()[0]
# 将均值centroid0存入列表centList中(聚类中心)
centList = [centroid0]
# 计算初始的平方误差
for j in range(m):
clusterAssment[j, 1] = distMeas(np.mat(centroid0), dataSet[j, :])**2
while (len(centList) < k):
lowestSSE = float(math.inf)
# 找出最优切分的类
for i in range(len(centList)):
# ptsInCurrCluster表示划分前的所有数据
ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:, 0].A == i)[0], :]
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
# 计算划分与没划分的数据的平方误差和
sseSplit = np.sum(splitClustAss[:, 1])
sseNotSplit = np.sum(clusterAssment[np.nonzero(clusterAssment[:, 0].A != i)[0], 1])
print("sseSplit:{} and notSplit:{} ".format(sseSplit, sseNotSplit))
# 找出使平方误差和最小的划分方式
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
# 完成一次切分,并输出最好的切分结果
bestClustAss[np.nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(centList)
bestClustAss[np.nonzero(bestClustAss[:, 0].A == 0)[0], 0] = bestCentToSplit
print('the bestCentToSplit is: ', bestCentToSplit)
print('the len of bestClustAss is: ', len(bestClustAss))
# 更新聚类中心与划分结果
centList[bestCentToSplit] = bestNewCents[0, :].tolist()[0]
centList.append(bestNewCents[1,:].tolist()[0])
clusterAssment[np.nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClustAss
return np.mat(centList), clusterAssment
输入以下命令:
dataMat = loadDataSet("E:\学习资料\机器学习算法刻意练习\机器学习实战书电子版\machinelearninginaction\Ch10\\testSet.txt")
centList, clusterAssment = biKmeans(dataMat, 4)
print("centList is:")
print(centList)
print("clusterAssment is :")
print(clusterAssment)
运行结果为:
sseSplit:792.9168565373268 and notSplit:0.0
the bestCentToSplit is: 0
the len of bestClustAss is: 80
sseSplit:66.36683512000786 and notSplit:466.63278133614426
sseSplit:83.5874695564185 and notSplit:326.2840752011824
the bestCentToSplit is: 1
the len of bestClustAss is: 40
sseSplit:66.36683512000786 and notSplit:83.5874695564185
sseSplit:18.398749985455712 and notSplit:377.2703018926498
sseSplit:32.678827295007544 and notSplit:358.8853180661336
the bestCentToSplit is: 0
the len of bestClustAss is: 40
centList is:
[[ 2.6265299 3.10868015]
[-3.38237045 -2.9473363 ]
[ 2.80293085 -2.7315146 ]
[-2.46154315 2.78737555]]
clusterAssment is :
[[ 0.00000000e+00 2.32019150e+00]
[ 3.00000000e+00 1.39004893e+00]
[ 2.00000000e+00 6.63839104e+00]
[ 1.00000000e+00 4.16140951e+00]
[ 0.00000000e+00 2.76967820e+00]
[ 3.00000000e+00 2.80101213e+00]
...
[ 0.00000000e+00 7.06014703e-02]
[ 3.00000000e+00 2.59901305e-01]
[ 2.00000000e+00 3.74491207e+00]
[ 1.00000000e+00 2.32143993e+00]]
由以上结果易知,经过三次划分,biKmeans算法成功将数据集分为四类,并给出了相应的聚类中心和分类结果。
来源:CSDN
作者:juanjuanyou
链接:https://blog.csdn.net/juanjuanyou/article/details/103599019