问题
I want to run a two stage probit least square regression in R. Does anyone know how to do this? Is there any package out there? I know it's possible to do it using Stata, so I imagine it's possible to do it with R.
回答1:
You might want to be more specific when you say 'two-stage-probit-least-squares'. Since you refer to a Stata program that implements this I am guessing you are talking about the CDSIMEQ package, which implements the Amemiya (1978) procedure for the Heckit model (a.k.a Generalized Tobit, a.k.a. Tobit type II model, etc.). As Grant said, systemfit will do a Tobit for you, but not with two equations. The MicEcon package did have a Heckit (but the package has split so many times I don't know where it is now).
If you want what the CDSIMEQ does, it can easily be implemented in R. I wrote a function that replicates CDSIMEQ:
tspls <- function(formula1, formula2, data) {
# The Continous model
mf1 <- model.frame(formula1, data)
y1 <- model.response(mf1)
x1 <- model.matrix(attr(mf1, "terms"), mf1)
# The dicontionous model
mf2 <- model.frame(formula2, data)
y2 <- model.response(mf2)
x2 <- model.matrix(attr(mf2, "terms"), mf2)
# The matrix of all the exogenous variables
X <- cbind(x1, x2)
X <- X[, unique(colnames(X))]
J1 <- matrix(0, nrow = ncol(X), ncol = ncol(x1))
J2 <- matrix(0, nrow = ncol(X), ncol = ncol(x2))
for (i in 1:ncol(x1)) J1[match(colnames(x1)[i], colnames(X)), i] <- 1
for (i in 1:ncol(x2)) J2[match(colnames(x2)[i], colnames(X)), i] <- 1
# Step 1:
cat("\n\tNOW THE FIRST STAGE REGRESSION")
m1 <- lm(y1 ~ X - 1)
m2 <- glm(y2 ~ X - 1, family = binomial(link = "probit"))
print(summary(m1))
print(summary(m2))
yhat1 <- m1$fitted.values
yhat2 <- X %*% coef(m2)
PI1 <- m1$coefficients
PI2 <- m2$coefficients
V0 <- vcov(m2)
sigma1sq <- sum(m1$residuals ^ 2) / m1$df.residual
sigma12 <- 1 / length(y2) * sum(y2 * m1$residuals / dnorm(yhat2))
# Step 2:
cat("\n\tNOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS")
m1 <- lm(y1 ~ yhat2 + x1 - 1)
m2 <- glm(y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit"))
sm1 <- summary(m1)
sm2 <- summary(m2)
print(sm1)
print(sm2)
# Step 3:
cat("\tNOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS\n\n")
gamma1 <- m1$coefficients[1]
gamma2 <- m2$coefficients[1]
cc <- sigma1sq - 2 * gamma1 * sigma12
dd <- gamma2 ^ 2 * sigma1sq - 2 * gamma2 * sigma12
H <- cbind(PI2, J1)
G <- cbind(PI1, J2)
XX <- crossprod(X) # X'X
HXXH <- solve(t(H) %*% XX %*% H) # (H'X'XH)^(-1)
HXXVXXH <- t(H) %*% XX %*% V0 %*% XX %*% H # H'X'V0X'XH
Valpha1 <- cc * HXXH + gamma1 ^ 2 * HXXH %*% HXXVXXH %*% HXXH
GV <- t(G) %*% solve(V0) # G'V0^(-1)
GVG <- solve(GV %*% G) # (G'V0^(-1)G)^(-1)
Valpha2 <- GVG + dd * GVG %*% GV %*% solve(XX) %*% solve(V0) %*% G %*% GVG
ans1 <- coef(sm1)
ans2 <- coef(sm2)
ans1[,2] <- sqrt(diag(Valpha1))
ans2[,2] <- sqrt(diag(Valpha2))
ans1[,3] <- ans1[,1] / ans1[,2]
ans2[,3] <- ans2[,1] / ans2[,2]
ans1[,4] <- 2 * pt(abs(ans1[,3]), m1$df.residual, lower.tail = FALSE)
ans2[,4] <- 2 * pnorm(abs(ans2[,3]), lower.tail = FALSE)
cat("Continuous:\n")
print(ans1)
cat("Dichotomous:\n")
print(ans2)
}
For comparison, we can replicate the sample from the author of CDSIMEQ in their article about the package.
> library(foreign)
> cdsimeq <- read.dta("http://www.stata-journal.com/software/sj3-2/st0038/cdsimeq.dta")
> tspls(continuous ~ exog3 + exog2 + exog1 + exog4,
+ dichotomous ~ exog1 + exog2 + exog5 + exog6 + exog7,
+ data = cdsimeq)
NOW THE FIRST STAGE REGRESSION
Call:
lm(formula = y1 ~ X - 1)
Residuals:
Min 1Q Median 3Q Max
-1.885921 -0.438579 -0.006262 0.432156 2.133738
Coefficients:
Estimate Std. Error t value Pr(>|t|)
X(Intercept) 0.010752 0.020620 0.521 0.602187
Xexog3 0.158469 0.021862 7.249 8.46e-13 ***
Xexog2 -0.009669 0.021666 -0.446 0.655488
Xexog1 0.159955 0.021260 7.524 1.19e-13 ***
Xexog4 0.316575 0.022456 14.097 < 2e-16 ***
Xexog5 0.497207 0.021356 23.282 < 2e-16 ***
Xexog6 -0.078017 0.021755 -3.586 0.000352 ***
Xexog7 0.161177 0.022103 7.292 6.23e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6488 on 992 degrees of freedom
Multiple R-squared: 0.5972, Adjusted R-squared: 0.594
F-statistic: 183.9 on 8 and 992 DF, p-value: < 2.2e-16
Call:
glm(formula = y2 ~ X - 1, family = binomial(link = "probit"))
Deviance Residuals:
Min 1Q Median 3Q Max
-2.49531 -0.59244 0.01983 0.59708 2.41810
Coefficients:
Estimate Std. Error z value Pr(>|z|)
X(Intercept) 0.08352 0.05280 1.582 0.113692
Xexog3 0.21345 0.05678 3.759 0.000170 ***
Xexog2 0.21131 0.05471 3.862 0.000112 ***
Xexog1 0.45591 0.06023 7.570 3.75e-14 ***
Xexog4 0.39031 0.06173 6.322 2.57e-10 ***
Xexog5 0.75955 0.06427 11.818 < 2e-16 ***
Xexog6 0.85461 0.06831 12.510 < 2e-16 ***
Xexog7 -0.16691 0.05653 -2.953 0.003152 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1386.29 on 1000 degrees of freedom
Residual deviance: 754.14 on 992 degrees of freedom
AIC: 770.14
Number of Fisher Scoring iterations: 6
NOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS
Call:
lm(formula = y1 ~ yhat2 + x1 - 1)
Residuals:
Min 1Q Median 3Q Max
-2.32152 -0.53160 0.04886 0.53502 2.44818
Coefficients:
Estimate Std. Error t value Pr(>|t|)
yhat2 0.257592 0.021451 12.009 <2e-16 ***
x1(Intercept) 0.012185 0.024809 0.491 0.623
x1exog3 0.042520 0.026735 1.590 0.112
x1exog2 0.011854 0.026723 0.444 0.657
x1exog1 0.007773 0.028217 0.275 0.783
x1exog4 0.318636 0.028311 11.255 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7803 on 994 degrees of freedom
Multiple R-squared: 0.4163, Adjusted R-squared: 0.4128
F-statistic: 118.2 on 6 and 994 DF, p-value: < 2.2e-16
Call:
glm(formula = y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit"))
Deviance Residuals:
Min 1Q Median 3Q Max
-2.49610 -0.58595 0.01969 0.59857 2.41281
Coefficients:
Estimate Std. Error z value Pr(>|z|)
yhat1 1.26287 0.16061 7.863 3.75e-15 ***
x2(Intercept) 0.07080 0.05276 1.342 0.179654
x2exog1 0.25093 0.06466 3.880 0.000104 ***
x2exog2 0.22604 0.05389 4.194 2.74e-05 ***
x2exog5 0.12912 0.09510 1.358 0.174544
x2exog6 0.95609 0.07172 13.331 < 2e-16 ***
x2exog7 -0.37128 0.06759 -5.493 3.94e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1386.29 on 1000 degrees of freedom
Residual deviance: 754.21 on 993 degrees of freedom
AIC: 768.21
Number of Fisher Scoring iterations: 6
NOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS
Continuous:
Estimate Std. Error t value Pr(>|t|)
yhat2 0.25759209 0.1043073 2.46955009 0.01369540
x1(Intercept) 0.01218500 0.1198713 0.10165068 0.91905445
x1exog3 0.04252006 0.1291588 0.32920764 0.74206810
x1exog2 0.01185438 0.1290754 0.09184073 0.92684309
x1exog1 0.00777347 0.1363643 0.05700519 0.95455252
x1exog4 0.31863627 0.1367881 2.32941597 0.02003661
Dichotomous:
Estimate Std. Error z value Pr(>|z|)
yhat1 1.26286574 0.7395166 1.7076909 0.0876937093
x2(Intercept) 0.07079775 0.2666447 0.2655134 0.7906139867
x2exog1 0.25092561 0.3126763 0.8025092 0.4222584495
x2exog2 0.22603717 0.2739307 0.8251618 0.4092797527
x2exog5 0.12911922 0.4822986 0.2677163 0.7889176766
x2exog6 0.95609385 0.2823662 3.3860070 0.0007091758
x2exog7 -0.37128221 0.3265478 -1.1369920 0.2555416141
回答2:
systemfit will also do the trick.
回答3:
there are several packages available in R to do two state least squares. here are a few
- sem: Two-Stage Least Squares
- Zelig: Link removed, no longer functional (28.07.11)
let me know if these serve your purpose.
来源:https://stackoverflow.com/questions/3843882/two-stage-least-square-in-r