问题
The standard way of doing a linear regression is something like this:
l <- lm(Sepal.Width ~ Petal.Length + Petal.Width, data=iris)
and then use predict(l, new_data)
to make predictions, where new_data is a dataframe with columns matching the formula. But lm()
returns an lm
object, which is a list that contains crap-loads of stuff that is mostly irrelevant in most situations. This includes a copy of the original data, and a bunch of named vectors and arrays the length/size of the data:
R> str(l)
List of 12
$ coefficients : Named num [1:3] 3.587 -0.257 0.364
..- attr(*, "names")= chr [1:3] "(Intercept)" "Petal.Length" "Petal.Width"
$ residuals : Named num [1:150] 0.2 -0.3 -0.126 -0.174 0.3 ...
..- attr(*, "names")= chr [1:150] "1" "2" "3" "4" ...
$ effects : Named num [1:150] -37.445 -2.279 -0.914 -0.164 0.313 ...
..- attr(*, "names")= chr [1:150] "(Intercept)" "Petal.Length" "Petal.Width" "" ...
$ rank : int 3
$ fitted.values: Named num [1:150] 3.3 3.3 3.33 3.27 3.3 ...
..- attr(*, "names")= chr [1:150] "1" "2" "3" "4" ...
$ assign : int [1:3] 0 1 2
$ qr :List of 5
..$ qr : num [1:150, 1:3] -12.2474 0.0816 0.0816 0.0816 0.0816 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:150] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:3] "(Intercept)" "Petal.Length" "Petal.Width"
.. ..- attr(*, "assign")= int [1:3] 0 1 2
..$ qraux: num [1:3] 1.08 1.1 1.01
..$ pivot: int [1:3] 1 2 3
..$ tol : num 1e-07
..$ rank : int 3
..- attr(*, "class")= chr "qr"
$ df.residual : int 147
$ xlevels : Named list()
$ call : language lm(formula = Sepal.Width ~ Petal.Length + Petal.Width, data = iris)
$ terms :Classes 'terms', 'formula' length 3 Sepal.Width ~ Petal.Length + Petal.Width
.. ..- attr(*, "variables")= language list(Sepal.Width, Petal.Length, Petal.Width)
.. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:3] "Sepal.Width" "Petal.Length" "Petal.Width"
.. .. .. ..$ : chr [1:2] "Petal.Length" "Petal.Width"
.. ..- attr(*, "term.labels")= chr [1:2] "Petal.Length" "Petal.Width"
.. ..- attr(*, "order")= int [1:2] 1 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(Sepal.Width, Petal.Length, Petal.Width)
.. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "numeric"
.. .. ..- attr(*, "names")= chr [1:3] "Sepal.Width" "Petal.Length" "Petal.Width"
$ model :'data.frame': 150 obs. of 3 variables:
..$ Sepal.Width : num [1:150] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
..$ Petal.Length: num [1:150] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
..$ Petal.Width : num [1:150] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
..- attr(*, "terms")=Classes 'terms', 'formula' length 3 Sepal.Width ~ Petal.Length + Petal.Width
.. .. ..- attr(*, "variables")= language list(Sepal.Width, Petal.Length, Petal.Width)
.. .. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
.. .. .. ..- attr(*, "dimnames")=List of 2
.. .. .. .. ..$ : chr [1:3] "Sepal.Width" "Petal.Length" "Petal.Width"
.. .. .. .. ..$ : chr [1:2] "Petal.Length" "Petal.Width"
.. .. ..- attr(*, "term.labels")= chr [1:2] "Petal.Length" "Petal.Width"
.. .. ..- attr(*, "order")= int [1:2] 1 1
.. .. ..- attr(*, "intercept")= int 1
.. .. ..- attr(*, "response")= int 1
.. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. .. ..- attr(*, "predvars")= language list(Sepal.Width, Petal.Length, Petal.Width)
.. .. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "numeric"
.. .. .. ..- attr(*, "names")= chr [1:3] "Sepal.Width" "Petal.Length" "Petal.Width"
- attr(*, "class")= chr "lm"
That stuff takes up a lot of space, and the lm
object ends up being almost an order of magnitude larger than the original dataset:
R> object.size(iris)
7088 bytes
R> object.size(l)
52704 bytes
This isn't a problem with a dataset as small as that, but it can be really problematic with a 170Mb dataset that produces a 450mb lm
object. Even with all the return options set to false, the lm object is still 5 times the original dataset:
R> ls <- lm(Sepal.Width ~ Petal.Length + Petal.Width, data=iris, model=FALSE, x=FALSE, y=FALSE, qr=FALSE)
R> object.size(ls)
30568 bytes
Is there any way of fitting a model in R, and then being able to predict output values on new input data, without storing crap tonnes of extra unnecessary data? In other words, is there a way to just store the model coefficients, but still be able to use those coefficients to predict on new data?
Edit: I guess, as well as not storing all that excess data, I'm also really interested in a way of using lm so that it doesn't even calculate that data - it's just wasted CPU time...
回答1:
You can use biglm:
m <- biglm(Sepal.Length ~ Petal.Length + Petal.Width, iris)
Since biglm
does not store the data in the output object you need to provide your data when making predictions:
p <- predict(m, newdata=iris)
The amount of data biglm
uses is proportional to the number of parameters:
> object.size(m)
6720 bytes
> d <- rbind(iris, iris)
> m <- biglm(Sepal.Width ~ Petal.Length + Petal.Width, data=d)
> object.size(m)
6720 bytes
biglm
also allows you to update the model with a new chunk of data using the update
method. Using this you can also estimate models when the complete dataset does not fit in memory.
回答2:
The only components of the lm
object that you need to calculate predicted values are terms
and coefficients
. However, you'll need to roll your own prediction function as predict.lm
complains if you delete the qr
component (which is needed to compute term-by-term effects and standard errors). Something like this should do.
m <- lm(Sepal.Length ~ Petal.Length + Petal.Width, iris)
m$effects <- m$fitted.values <- m$residuals <- m$model <- m$qr <-
m$rank <- m$assign <- NULL
predict0 <- function(object, newdata)
{
mm <- model.matrix(terms(object), newdata)
mm %*% object$coefficients
}
predict0(m, iris[1:10,])
回答3:
I think there are two approaches to deal with this:
- Use
lm
and trim the fat afterwards. For quite nice and instructive discussions, see e.g. here and here. This will not solve the "computation time" issue. - Do not use
lm
.
If you go for the second option, you could easily write up the matrix operations yourself so that you only get the predicted values. If you prefer to use a canned routine, you could try other packages that implement least squares, e.g. fastLm
from the RcppArmadillo
-package (or the Eigen
version of it, or as others pointed out biglm
), which stores much less information. Using this approach has some benefits, e.g. providing a formula-interface and such things. fastLm
is also quite fast, if computation time is a concern for you.
For comparison, here a small benchmark:
l <- lm(Sepal.Width ~ Petal.Length + Petal.Width, data=iris)
library(biglm)
m <- biglm(Sepal.Length ~ Petal.Length + Petal.Width, iris)
library(RcppArmadillo)
a <- fastLm(Sepal.Length ~ Petal.Length + Petal.Width, iris)
object.size(l)
# 52704 bytes
object.size(m)
# 6664 bytes
object.size(a)
# 6344 bytes
来源:https://stackoverflow.com/questions/25679050/linear-regression-in-r-without-copying-data-in-memory