问题
I need to apply lm()
to an enlarging subset of my dataframe dat
, while making prediction for the next observation. For example, I am doing:
fit model predict
---------- -------
dat[1:3, ] dat[4, ]
dat[1:4, ] dat[5, ]
. .
. .
dat[-1, ] dat[nrow(dat), ]
I know what I should do for a particular subset (related to this question: predict() and newdata - How does this work?). For example to predict the last row, I do
dat1 = dat[1:(nrow(dat)-1), ]
dat2 = dat[nrow(dat), ]
fit = lm(log(clicks) ~ log(v1) + log(v12), data=dat1)
predict.fit = predict(fit, newdata=dat2, se.fit=TRUE)
How can I do this automatically for all subsets, and potentially extract what I want into a table?
- From
fit
, I'd need thesummary(fit)$adj.r.squared
; - From
predict.fit
I'd needpredict.fit$fit
value.
Thanks.
回答1:
(Efficient) solution
This is what you can do:
p <- 3 ## number of parameters in lm()
n <- nrow(dat) - 1
## a function to return what you desire for subset dat[1:x, ]
bundle <- function(x) {
fit <- lm(log(clicks) ~ log(v1) + log(v12), data = dat, subset = 1:x, model = FALSE)
pred <- predict(fit, newdata = dat[x+1, ], se.fit = TRUE)
c(summary(fit)$adj.r.squared, pred$fit, pred$se.fit)
}
## rolling regression / prediction
result <- t(sapply(p:n, bundle))
colnames(result) <- c("adj.r2", "prediction", "se")
Note I have done several things inside the bundle
function:
- I have used
subset
argument for selecting a subset to fit - I have used
model = FALSE
to not save model frame hence we save workspace
Overall, there is no obvious loop, but sapply
is used.
- Fitting starts from
p
, the minimum number of data required to fit a model withp
coefficients; - Fitting terminates at
nrow(dat) - 1
, as we at least need the final column for prediction.
Test
Example data (with 30 "observations")
dat <- data.frame(clicks = runif(30, 1, 100), v1 = runif(30, 1, 100),
v12 = runif(30, 1, 100))
Applying code above gives results
(27 rows in total, truncated output for 5 rows)
adj.r2 prediction se
[1,] NaN 3.881068 NaN
[2,] 0.106592619 3.676821 0.7517040
[3,] 0.545993989 3.892931 0.2758347
[4,] 0.622612495 3.766101 0.1508270
[5,] 0.180462206 3.996344 0.2059014
The first column is the adjusted-R.squared value for fitted model, while the second column is the prediction. The first value for adj.r2
is NaN
, because the first model we fit has 3 coefficients for 3 data points, hence no sensible statistics is available. The same happens to se
as well, as the fitted line has no 0 residuals, so prediction is done without uncertainty.
回答2:
I just made up some random data to use for this example. I'm calling the object data
because that was what it was called in the question at the time that I wrote this solution (call it anything you like).
(Efficient) Solution
data <- data.frame(v1=rnorm(100),v2=rnorm(100),clicks=rnorm(100))
data1 = data[1:(nrow(data)-1), ]
data2 = data[nrow(data), ]
for(i in 3:nrow(data)){
nam <- paste("predict", i, sep = "")
nam1 <- paste("fit", i, sep = "")
nam2 <- paste("summary_fit", i, sep = "")
fit = lm(clicks ~ v1 + v2, data=data[1:i,])
tmp <- predict(fit, newdata=data2, se.fit=TRUE)
tmp1 <- fit
tmp2 <- summary(fit)
assign(nam, tmp)
assign(nam1, tmp1)
assign(nam2, tmp2)
}
All of the results you want will be stored in the data objects this creates.
For example:
> summary_fit10$r.squared
[1] 0.3087432
You mentioned in the comments that you'd like a table of results. You can programmatically create tables of results from the 3 types of output files like this:
rm(data,data1,data2,i,nam,nam1,nam2,fit,tmp,tmp1,tmp2)
frames <- ls()
frames.fit <- frames[1:98] #change index or use pattern matching as needed
frames.predict <- frames[99:196]
frames.sum <- frames[197:294]
fit.table <- data.frame(intercept=NA,v1=NA,v2=NA,sourcedf=NA)
for(i in 1:length(frames.fit)){
tmp <- get(frames.fit[i])
fit.table <- rbind(fit.table,c(tmp$coefficients[[1]],tmp$coefficients[[2]],tmp$coefficients[[3]],frames.fit[i]))
}
fit.table
> fit.table
intercept v1 v2 sourcedf
2 -0.0647017971121678 1.34929652763687 -0.300502017324518 fit10
3 -0.0401617893034109 -0.034750571912636 -0.0843076273486442 fit100
4 0.0132968863522573 1.31283604433593 -0.388846211083564 fit11
5 0.0315113918953643 1.31099122173898 -0.371130010135382 fit12
6 0.149582794027583 0.958692838785998 -0.299479715938493 fit13
7 0.00759688947362175 0.703525856001948 -0.297223988673322 fit14
8 0.219756240025917 0.631961979610744 -0.347851129205841 fit15
9 0.13389223748979 0.560583832333355 -0.276076134872669 fit16
10 0.147258022154645 0.581865844000838 -0.278212722024832 fit17
11 0.0592160359650468 0.469842498721747 -0.163187274356457 fit18
12 0.120640756525163 0.430051839741539 -0.201725012088506 fit19
13 0.101443924785995 0.34966728554219 -0.231560038360121 fit20
14 0.0416637001406594 0.472156988919337 -0.247684504074867 fit21
15 -0.0158319749710781 0.451944113682333 -0.171367482879835 fit22
16 -0.0337969739950376 0.423851304105399 -0.157905431162024 fit23
17 -0.109460218252207 0.32206642419212 -0.055331391802687 fit24
18 -0.100560410735971 0.335862465403716 -0.0609509815266072 fit25
19 -0.138175283219818 0.390418411384468 -0.0873106257144312 fit26
20 -0.106984355317733 0.391270279253722 -0.0560299858019556 fit27
21 -0.0740684978271464 0.385267011513678 -0.0548056844433894 fit28
来源:https://stackoverflow.com/questions/38041167/rolling-regression-and-prediction-with-lm-and-predict