问题
Edit -- This question was originally titled << Long to wide data reshaping in R >>
I'm just learning R and trying to find ways to apply it to help out others in my life. As a test case, I'm working on reshaping some data, and I'm having trouble following the examples I've found online. What I'm starting with looks like this:
ID Obs 1 Obs 2 Obs 3
1 43 48 37
1 27 29 22
1 36 32 40
2 33 38 36
2 29 32 27
2 32 31 35
2 25 28 24
3 45 47 42
3 38 40 36
And what I want to end up with will look like this:
ID Obs 1 mean Obs 1 std dev Obs 2 mean Obs 2 std dev
1 x x x x
2 x x x x
3 x x x x
And so forth. What I'm unsure of is whether I need additional information in my long-form data, or what. I imagine that the math part (finding the mean and standard deviations) will be the easy part, but I haven't been able to find a way that seems to work to reshape the data correctly to start in on that process.
Thanks very much for any help.
回答1:
This is an aggregation problem, not a reshaping problem as the question originally suggested -- we wish to aggregate each column into a mean and standard deviation by ID. There are many packages that handle such problems. In the base of R it can be done using aggregate
like this (assuming DF
is the input data frame):
ag <- aggregate(. ~ ID, DF, function(x) c(mean = mean(x), sd = sd(x)))
Note 1: A commenter pointed out that ag
is a data frame for which some columns are matrices. Although initially that may seem strange, in fact it simplifies access. ag
has the same number of columns as the input DF
. Its first column ag[[1]]
is ID
and the ith column of the remainder ag[[i+1]]
(or equivalanetly ag[-1][[i]]
) is the matrix of statistics for the ith input observation column. If one wishes to access the jth statistic of the ith observation it is therefore ag[[i+1]][, j]
which can also be written as ag[-1][[i]][, j]
.
On the other hand, suppose there are k
statistic columns for each observation in the input (where k=2 in the question). Then if we flatten the output then to access the jth statistic of the ith observation column we must use the more complex ag[[k*(i-1)+j+1]]
or equivalently ag[-1][[k*(i-1)+j]]
.
For example, compare the simplicity of the first expression vs. the second:
ag[-1][[2]]
## mean sd
## [1,] 36.333 10.2144
## [2,] 32.250 4.1932
## [3,] 43.500 4.9497
ag_flat <- do.call("data.frame", ag) # flatten
ag_flat[-1][, 2 * (2-1) + 1:2]
## Obs_2.mean Obs_2.sd
## 1 36.333 10.2144
## 2 32.250 4.1932
## 3 43.500 4.9497
Note 2: The input in reproducible form is:
Lines <- "ID Obs_1 Obs_2 Obs_3
1 43 48 37
1 27 29 22
1 36 32 40
2 33 38 36
2 29 32 27
2 32 31 35
2 25 28 24
3 45 47 42
3 38 40 36"
DF <- read.table(text = Lines, header = TRUE)
回答2:
There are a few different ways to go about it. reshape2
is a helpful package.
Personally, I like using data.table
Below is a step-by-step
If myDF
is your data.frame
:
library(data.table)
DT <- data.table(myDF)
DT
# this will get you your mean and SD's for each column
DT[, sapply(.SD, function(x) list(mean=mean(x), sd=sd(x)))]
# adding a `by` argument will give you the groupings
DT[, sapply(.SD, function(x) list(mean=mean(x), sd=sd(x))), by=ID]
# If you would like to round the values:
DT[, sapply(.SD, function(x) list(mean=round(mean(x), 3), sd=round(sd(x), 3))), by=ID]
# If we want to add names to the columns
wide <- setnames(DT[, sapply(.SD, function(x) list(mean=round(mean(x), 3), sd=round(sd(x), 3))), by=ID], c("ID", sapply(names(DT)[-1], paste0, c(".men", ".SD"))))
wide
ID Obs.1.men Obs.1.SD Obs.2.men Obs.2.SD Obs.3.men Obs.3.SD
1: 1 35.333 8.021 36.333 10.214 33.0 9.644
2: 2 29.750 3.594 32.250 4.193 30.5 5.916
3: 3 41.500 4.950 43.500 4.950 39.0 4.243
Also, this may or may not be helpful
> DT[, sapply(.SD, summary), .SDcols=names(DT)[-1]]
Obs.1 Obs.2 Obs.3
Min. 25.00 28.00 22.00
1st Qu. 29.00 31.00 27.00
Median 33.00 32.00 36.00
Mean 34.22 36.11 33.22
3rd Qu. 38.00 40.00 37.00
Max. 45.00 48.00 42.00
回答3:
Here is probably the simplest way to go about it (with a reproducible example):
library(plyr)
df <- data.frame(ID=rep(1:3, 3), Obs_1=rnorm(9), Obs_2=rnorm(9), Obs_3=rnorm(9))
ddply(df, .(ID), summarize, Obs_1_mean=mean(Obs_1), Obs_1_std_dev=sd(Obs_1),
Obs_2_mean=mean(Obs_2), Obs_2_std_dev=sd(Obs_2))
ID Obs_1_mean Obs_1_std_dev Obs_2_mean Obs_2_std_dev
1 1 -0.13994642 0.8258445 -0.15186380 0.4251405
2 2 1.49982393 0.2282299 0.50816036 0.5812907
3 3 -0.09269806 0.6115075 -0.01943867 1.3348792
EDIT: The following approach saves you a lot of typing when dealing with many columns.
ddply(df, .(ID), colwise(mean))
ID Obs_1 Obs_2 Obs_3
1 1 -0.3748831 0.1787371 1.0749142
2 2 -1.0363973 0.0157575 -0.8826969
3 3 1.0721708 -1.1339571 -0.5983944
ddply(df, .(ID), colwise(sd))
ID Obs_1 Obs_2 Obs_3
1 1 0.8732498 0.4853133 0.5945867
2 2 0.2978193 1.0451626 0.5235572
3 3 0.4796820 0.7563216 1.4404602
回答4:
I add the dplyr
solution.
set.seed(1)
df <- data.frame(ID=rep(1:3, 3), Obs_1=rnorm(9), Obs_2=rnorm(9), Obs_3=rnorm(9))
library(dplyr)
df %>% group_by(ID) %>% summarise_each(funs(mean, sd))
# ID Obs_1_mean Obs_2_mean Obs_3_mean Obs_1_sd Obs_2_sd Obs_3_sd
# (int) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl)
# 1 1 0.4854187 -0.3238542 0.7410611 1.1108687 0.2885969 0.1067961
# 2 2 0.4171586 -0.2397030 0.2041125 0.2875411 1.8732682 0.3438338
# 3 3 -0.3601052 0.8195368 -0.4087233 0.8105370 0.3829833 1.4705692
回答5:
Here's another take on the data.table
answers, using @Carson's data, that's a bit more readable (and also a little faster, because of using lapply
instead of sapply
):
library(data.table)
set.seed(1)
dt = data.table(ID=c(1:3), Obs_1=rnorm(9), Obs_2=rnorm(9), Obs_3=rnorm(9))
dt[, c(mean = lapply(.SD, mean), sd = lapply(.SD, sd)), by = ID]
# ID mean.Obs_1 mean.Obs_2 mean.Obs_3 sd.Obs_1 sd.Obs_2 sd.Obs_3
#1: 1 0.4854187 -0.3238542 0.7410611 1.1108687 0.2885969 0.1067961
#2: 2 0.4171586 -0.2397030 0.2041125 0.2875411 1.8732682 0.3438338
#3: 3 -0.3601052 0.8195368 -0.4087233 0.8105370 0.3829833 1.4705692
来源:https://stackoverflow.com/questions/16367436/compute-mean-and-standard-deviation-by-group-for-multiple-variables-in-a-data-fr