问题
I have a data frame similar to the following with a total of 500 columns:
Probes <- data.frame(Days=seq(0.01, 4.91, 0.01), B1=5:495,B2=-100:390, B3=10:500,B4=-200:290)
I would like to calculate a rolling window linear regression where my window size is 12 data points and each sequential regression is separated by 6 data points. For each regression, "Days" will always be the x component of the model, and the y's would be each of the other columns (B1, followed by B2, B3, etc). I would then like to save the co-efficients as a dataframe with the existing column titles (B1, B2, etc).
I think my code is close, but is not quite working. I used rollapply from the zoo library.
slopedata<-rollapply(zoo(Probes), width=12, function(Probes) {
coef(lm(formula=y~Probes$Days, data = Probes))[2]
}, by = 6, by.column=TRUE, align="right")
If possible, I would also like to have the "xmins" saved to a vector to add to the dataframe. This would mean the smallest x value used in each regression (basically it would be every 6 numbers in the "Days" column.) Thanks for your help.
回答1:
1) Define a zoo object z
whose data contains Probes
and whose index is taken from the first column of Probes, i.e. Days
. Noting that lm
allows y
to be a matrix define a coefs
function which computes the regression coefficients. Finally rollapply
over z
. Note that the index of the returned object gives xmin.
library(zoo)
z <- zoo(Probes, Probes[[1]])
coefs <- function(z) c(unlist(as.data.frame(coef(lm(z[,-1] ~ z[,1])))))
rz <- rollapply(z, 12, by = 6, coefs, by.column = FALSE, align = "left")
giving:
> head(rz)
B11 B12 B21 B22 B31 B32 B41 B42
0.01 4 100 -101 100 9 100 -201 100
0.07 4 100 -101 100 9 100 -201 100
0.13 4 100 -101 100 9 100 -201 100
0.19 4 100 -101 100 9 100 -201 100
0.25 4 100 -101 100 9 100 -201 100
0.31 4 100 -101 100 9 100 -201 100
Note that DF <- fortify.zoo(rz)
could be used if you needed a data frame representation of rz
.
2) An alternative somewhat similar approch would be to rollaplly
over the row numbers:
library(zoo)
y <- as.matrix(Probes[-1])
Days <- Probes$Days
n <- nrow(Probes)
coefs <- function(ix) c(unlist(as.data.frame(coef(lm(y ~ Days, subset = ix)))),
xmins = Days[ix][1])
r <- rollapply(1:n, 12, by = 6, coefs)
回答2:
try this:
# here are the xmin values you wanted
xmins <- Probes$Days[seq(1,nrow(Probes),6)]
# here we build a function that will run regressions across the columns
# y1 vs x, y2 vs x, y3 vs x...
# you enter the window and by (12/6) in order to limit the interval being
# regressed. this is later called in do.call
runreg <- function(Probes,m,window=12,by=6){
# beg,end are used to specify the interval
beg <- seq(1,nrow(Probes),by)[m]
end <- beg+window-1
# this is used to go through all the columns
N <- ncol(Probes)-1
tmp <- numeric(N)
# go through each column and store the coefficients in tmp
for(i in 1:N){
y <- Probes[[i+1]][beg:end]
x <- Probes$Days[beg:end]
tmp[i] <- coef(lm(y~x))[2][[1]]
}
# put all our column regressions into a dataframe
res <- rbind('coeff'=tmp)
colnames(res) <- colnames(Probes)[-1]
return(res)
}
# now that we've built the function to do the column regressions
# we just need to go through all the window-ed regressions (row regressions)
res <- do.call(rbind,lapply(1:length(xmins),function(m) runreg(Probes,m)))
# these rownames are the index of the xmin values
rownames(res) <- seq(1,nrow(Probes),6)
res <- data.frame(res,xmins)
回答3:
You can also use the rollRegres
package as follows
# setup data
Probes <- data.frame(
# I changed the days to be intergers
Days=seq(1L, 491L, 1L),
B1=5:495, B2=-100:390, B3=10:500 , B4=-200:290)
# setup grp argument
grp_arg <- as.integer((Probes$Days - 1L) %/% 6)
# estimate coefs. width argument is realtive in grp units
library(rollRegres)
X <- cbind(1, Probes$Days / 100)
Ys <- as.matrix(Probes[, 2:5])
out <- lapply(1:ncol(Ys), function(i)
roll_regres.fit(x = X, y = Ys[, i], width = 2L, grp = grp_arg)$coefs)
out <- do.call(cbind, out)
# only keep the complete.cases and the unique values
colnames(out) <- sapply(1:4, function(i) paste0("B", i, 0:1))
out <- out[c(T, grp_arg[-1] != head(grp_arg, -1)), ]
out <- out[complete.cases(out), ]
head(out)
#R B10 B11 B20 B21 B30 B31 B40 B41
#R [1,] 4 100 -101 100 9 100 -201 100
#R [2,] 4 100 -101 100 9 100 -201 100
#R [3,] 4 100 -101 100 9 100 -201 100
#R [4,] 4 100 -101 100 9 100 -201 100
#R [5,] 4 100 -101 100 9 100 -201 100
#R [6,] 4 100 -101 100 9 100 -201 100
The solution is a lot faster than e.g., the zoo
solution
library(zoo) coefs <- function(z) c(unlist(as.data.frame(coef(lm(z[,-1] ~ z[,1]))))) microbenchmark::microbenchmark( rollapply = {
z <- zoo(Probes, Probes[[1]])
rz <- rollapply(z, 12, by = 6, coefs, by.column = FALSE, align = "left") }, roll_regres = {
grp_arg <- as.integer((Probes$Days - 1L) %/% 6)
X <- cbind(1, Probes$Days / 100)
Ys <- as.matrix(Probes[, 2:5])
out <- lapply(1:ncol(Ys), function(i)
roll_regres.fit(x = X, y = Ys[, i], width = 2L, grp = grp_arg)$coefs)
out <- do.call(cbind, out)
colnames(out) <- sapply(1:4, function(i) paste0("B", i, 0:1))
out <- out[c(T, grp_arg[-1] != head(grp_arg, -1)), ]
out <- out[complete.cases(out), ]
head(out) } )
#R Unit: microseconds
#R expr min lq mean median uq max neval
#R rollapply 53392.614 56330.492 59793.106 58363.2825 60902.938 119206.76 100
#R roll_regres 865.186 920.297 1074.161 983.9015 1047.705 5071.41 100
At present you though need to install the package from Github due to an error in the validation in version 0.1.0
. Thus, run
devtools::install_github("boennecd/rollRegres", upgrade_dependencies = FALSE,
build_vignettes = TRUE)
来源:https://stackoverflow.com/questions/33813627/using-rollapply-and-lm-over-multiple-columns-of-data