问题
I am trying to finetune a model in Keras:
inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150,
150, 1))
x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)
####training training training ... save weights
classifier.load_weights("saved_weights.h5")
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3
x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)
But I get the error:
ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2
回答1:
You shouldn't use pop()
method on models created using functional API (i.e. keras.models.Model
). Only Sequential models (i.e. keras.models.Sequential
) have a built-in pop() method (usage: model.pop()
). Instead, use index or the names of the layers to access a specific layer:
classifier.load_weights("saved_weights.h5")
x = classifier.layers[-5].output # use index of the layer directly
x = GlobalAveragePooling2D()(x)
来源:https://stackoverflow.com/questions/53312025/keras-finetunning-inceptionv3-tensor-dimension-error