How to convert a retrained model to tflite format?

喜你入骨 提交于 2019-12-11 08:37:45

问题


I have retrained an image classifier model on MobileNet, I have these files.

Further, I used toco to compress the retrained model to convert the model to .lite format, but I need it in .tflite format. Is there anyway I can get to tflite format from existing files?


回答1:


You can rename the .lite model to .tflite and it should work just fine. Alternatively, with toco, you can rename the output as it is created :

toco \
  --input_file=tf_files/retrained_graph.pb \
  --output_file=tf_files/optimized_graph.lite \ //change this to tflite
  --input_format=TENSORFLOW_GRAPHDEF \
  --output_format=TFLITE \
  --input_shape=1,224,224,3 \
  --input_array=input \
  --output_array=final_result \
  --inference_type=FLOAT \
  --input_data_type=FLOAT



回答2:


In order to convert TensorFlow checkpoints and GraphDef to a TensorFlow Lite FlatBuffer:

  1. Freeze the checkpoints and graph using freeze_graph.py
  2. Convert the frozen graph to a TensorFlow Lite FlatBuffer using TOCO.

Your freeze_graph.py command will look similar to the following:

freeze_graph -- \
--input_graph=output_graph.pb \
--input_binary=true \
--input_checkpoint=checkpoint \
--output_graph=frozen_graph.pb \
--output_node_names= MobilenetV1/Predictions/Softmax

You can use either TocoConverter (Python API) or tflite_convert (command line tool) with your model. TocoConverter accepts a tf.Session, frozen graph def, SavedModel directory or a Keras model file. tflite_convert accepts the later three formats.

When using TOCO, specify the output_file parameter with a .tflite extension.



来源:https://stackoverflow.com/questions/51220978/how-to-convert-a-retrained-model-to-tflite-format

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!