问题
I would like to use the nlsfit
from the easynls
package with ggplot2 if at all possible.
This is what I have done so far:
Set up subset data:
library('ggplot2') library('easynls') x <- seq(25,97) y <- c(0.014, 0.016, 0.015, 0.016, 0.018, 0.019, 0.023, 0.019, 0.021, 0.017, 0.018, 0.016, 0.016, 0.020, 0.018, 0.019, 0.022, 0.023, 0.027, 0.027, 0.028, 0.031, 0.029, 0.032, 0.030, 0.030, 0.030, 0.033, 0.039, 0.038, 0.039, 0.046, 0.042, 0.043, 0.050, 0.054, 0.059, 0.064, 0.062, 0.058, 0.063, 0.069, 0.071, 0.069, 0.073, 0.071, 0.070, 0.077, 0.086, 0.077, 0.090, 0.086, 0.098, 0.108, 0.112, 0.116, 0.129, 0.120, 0.128, 0.141, 0.150, 0.143, 0.148, 0.150, 0.162, 0.162, 0.168, 0.152, 0.151, 0.161, 0.169, 0.189, 0.184) data <- data.frame(x,y)
Run NLSfit on sample data
nlsfit = nlsfit(data.frame(x,y), model=6, start=c(250,0.05)) nlsfit # $Model # [1] "y~a*exp(b*x)" # $Parameters # y # coefficient a 0.0061 # coefficient b 0.0358 # p-value t.test for a 0.0000 # p-value t.test for b 0.0000 # r-squared 0.9793 # adjusted r-squared 0.9790 # AIC -500.0812 # BIC -493.2098
Plot using
plot()
with a lineplot(x, y) a <- nlsfit$Parameters[1,] b <- nlsfit$Parameters[2,] lines(x, a*exp(x*b), col="steelblue")
Attempt to use
nls
with ggplot2 (this works - but the fit isn't as good on the full dataset)...ggplot(data, aes(x=x, y=y)) + geom_point( ) + geom_smooth(method="nls", formula=y~a*exp(x*b), method.args=list(start=c(a=250,b=0.05)), se=FALSE)
Attempt to
nlsfit
with ggplot2 -- doesn't work# Below doesn't work ggplot(data, aes(x=x, y=y)) + geom_point( ) + geom_smooth(method="nlsfit", formula=y~a*exp(x*b), method.args=list(data.frame(x, y), model=6, start=c(250,0.05)), se=FALSE) # Warning message: # Computation failed in `stat_smooth()`: # unused arguments (formula, weights = weight, list(x = 25:97, y = c(0.014, 0.016, 0.015, 0.016, 0.018, 0.019, 0.023, 0.019, 0.021, 0.017, 0.018, 0.016, 0.016, 0.02, 0.018, 0.019, 0.022, 0.023, 0.027, 0.027, 0.028, 0.031, 0.029, 0.032, 0.03, 0.03, 0.03, 0.033, 0.039, 0.038, 0.039, 0.046, 0.042, 0.043, 0.05, 0.054, 0.059, 0.064, 0.062, 0.058, 0.063, 0.069, 0.071, 0.069, 0.073, 0.071, 0.07, 0.077, 0.086, 0.077, 0.09, 0.086, 0.098, 0.108, 0.112, 0.116, 0.129, 0.12, 0.128, 0.141, 0.15, 0.143, 0.148, 0.15, 0.162, # 0.162, 0.168, 0.152, 0.151, 0.161, 0.169, 0.189, 0.184)))
Is this possible - would appreciate any help. Thanks.
回答1:
You can try stat_function
to make the last part work:
a <- nlsfit$Parameters[row.names(nlsfit$Parameters) == 'coefficient a',]
b <- nlsfit$Parameters[row.names(nlsfit$Parameters) == 'coefficient b',]
ggplot(data, aes(x=x, y=y)) + geom_point() +
stat_function(fun=function(x) a*exp(b*x), colour = "blue")
来源:https://stackoverflow.com/questions/41881329/use-nlsfit-within-geom-smooth-to-add-exponential-line-to-plot