Full sklearn pipeline example

笑着哭i 提交于 2019-12-11 05:10:01

问题


I am trying to use sklearn pipeline. But i tried various tutorials online and it didnt help me.

import pandas as pd 
import numpy as np
import json
import seaborn as sb 
from sklearn.metrics import log_loss
from sklearn import linear_model 
from sklearn.model_selection import StratifiedKFold
from sklearn.svm import SVC
from scipy.stats import zscore
from Transformers import TextTransformer
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.model_selection import GridSearchCV
%matplotlib inline
df = pd.read_json('data/train.json', encoding = 'utf-8', dtype = {'description': str})
len(df)
df = df[['description', 'interest_level']]
from sklearn.pipeline import Pipeline, FeatureUnion
a = TextTransformer('description', max_features=50)
b = TextTransformer('features', max_features=10)
pipeline = Pipeline([
    ('description',a ), # can pass in either a pipeline
        #('features',b ) # or a transformer
J    ('clf', SVC())  # classifier
])
pipeline.fit(df[:,'interest_level'])

My Text transformer

from sklearn.base import BaseEstimator, TransformerMixin
from bs4 import BeautifulSoup
from sklearn.feature_extraction.text import TfidfVectorizer
import nltk


class TextTransformer(BaseEstimator, TransformerMixin):
    def __init__(self, column, max_features=5000):
        self.tfidfVectorizer = TfidfVectorizer(use_idf=False, stop_words='english',
                                               tokenizer=self._custom_tokenizer, analyzer='word',
                                               max_features=max_features)
        self._vectorizer = None
        self._column = column

    def _custom_tokenizer(self, string):
        # string = re.sub('^[\w]', '', string)
        tokens = nltk.word_tokenize(string)
        cleaned = [x if not x.isdigit() else '_NUM_' for x in tokens]
        return [str(x.encode('utf-8')) for x in cleaned if (x.isalpha() or x == '_NUM_')]

    def _clean_html_tags(self, content):
        return BeautifulSoup(content, 'lxml').text

    def fit(self, df):
        self._vectorizer = self.tfidfVectorizer.fit(df[self._column].apply(self._clean_html_tags))
        return self

    def transform(self, df):
        return self._vectorizer.transform(df[self._column]).todense()

However, i cannot seem to get it right. It keeps on throw this exception in ipython notebook

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-11-b3788282dc5c> in <module>()
      8     ('clf', SVC())  # classifier
      9 ])
---> 10 pipeline.fit(df[:,'interest_level'])

/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas/core/frame.pyc in __getitem__(self, key)
   2057             return self._getitem_multilevel(key)
   2058         else:
-> 2059             return self._getitem_column(key)
   2060 
   2061     def _getitem_column(self, key):

/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas/core/frame.pyc in _getitem_column(self, key)
   2064         # get column
   2065         if self.columns.is_unique:
-> 2066             return self._get_item_cache(key)
   2067 
   2068         # duplicate columns & possible reduce dimensionality

/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas/core/generic.pyc in _get_item_cache(self, item)
   1382         """Return the cached item, item represents a label indexer."""
   1383         cache = self._item_cache
-> 1384         res = cache.get(item)
   1385         if res is None:
   1386             values = self._data.get(item)

TypeError: unhashable type

Description of data

    description interest_level
10  A Brand New 3 Bedroom 1.5 bath ApartmentEnjoy ...   medium
10000       low
100004  Top Top West Village location, beautiful Pre-w...   high
100007  Building Amenities - Garage - Garden - fitness...   low
100013  Beautifully renovated 3 bedroom flex 4 bedroom...   low

Interest level would be my target variable


回答1:


You're fitting only one column (df[:, 'interest_level]), but then your first step (transformer a: TextTransformer) is trying to access the column description.




回答2:


Writing Pipelines is much easier with decorators, see this example

Your code would look something like this:

from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
@SKTransform
def clean_num( txt):
        return re.compile('\\d+').sub('_NUM_', txt)

@SKTransform
def clean_tags(content):
        return BeautifulSoup(content, 'lxml').text

ppl = Pipeline([clean_tags,
                clean_num,
                TfidfVectorizer(use_idf=False, stop_words='english',tokenizer=nltk.word_tokenize,analyzer='word',max_features=max_features),
      ])


来源:https://stackoverflow.com/questions/43013565/full-sklearn-pipeline-example

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!