问题
In the following example, I'm using a wrapper function to fit a gls object. I can successfully return the model prediction for the original data, but not when using newdata
, which returns the error "Error in eval(expr, envir, enclos) : 'nthcdr' needs a list to CDR down
":
# library -----------------------------------------------------------------
library(nlme)
# wrapper function --------------------------------------------------------
test.gls <- function(data, ...){
fit <- gls(data=data, ...)
return(fit)
}
# make data ---------------------------------------------------------------
set.seed(1)
n <- 20
x <- sort(rlnorm(n, meanlog = 0.25, sdlog = 1.5))
b <- 100
cv <- 0.5
y <- x*b * rlnorm(n, 0, cv)
dat <- data.frame(x,y)
# fit model ---------------------------------------------------------------
fit <- test.gls(data=dat, model=y~x-1, weights=varExp())
class(fit)
# [1] "gls"
plot(y~x, dat)
lines(dat$x, predict(fit)) # works
# prediction --------------------------------------------------------------
newdat <- data.frame(x=sort(rlnorm(n, meanlog = 0.25, sdlog = 1.5)))
pred <- predict(fit)
newpred <- predict(fit, newdata = newdat)
# Error in eval(expr, envir, enclos) : 'nthcdr' needs a list to CDR down
回答1:
The following answer seems to provide one solution using do.call
: https://stackoverflow.com/a/7668846/1199289
Example:
# library -----------------------------------------------------------------
library(nlme)
# wrapper function --------------------------------------------------------
test.gls <- function(data, ...){
fit <- gls(data=data, ...)
return(fit)
}
test.gls2 <- function(argList=NULL){
fit <- do.call("gls", args = argList)
return(fit)
}
# make data ---------------------------------------------------------------
set.seed(1)
n <- 20
x <- sort(rlnorm(n, meanlog = 0.25, sdlog = 1.5))
b <- 100
cv <- 0.5
y <- x*b * rlnorm(n, 0, cv)
dat <- data.frame(x,y)
# fit model ---------------------------------------------------------------
fit <- test.gls(data=dat, model=y~x-1, weights=varExp())
fit2 <- test.gls2(argList=list(data=dat, model=y~x-1, weights=varExp()))
class(fit)
# [1] "gls"
plot(y~x, dat)
lines(dat$x, predict(fit)) # works
# prediction --------------------------------------------------------------
newdat <- data.frame(x=sort(rlnorm(n, meanlog = 0.25, sdlog = 1.5)))
pred <- predict(fit)
newpred <- predict(fit, newdata = newdat)
# Error in eval(expr, envir, enclos) : 'nthcdr' needs a list to CDR down
newpred2 <- predict(fit2, newdata = newdat) # works
来源:https://stackoverflow.com/questions/35863439/gls-object-produced-with-wrapper-function-fails-for-prediction-with-new-data