问题
I have to postprocess data from a parametric analysis which has as output a 1D-array with the results. I would like to reshape this 1D array into a multidimensional matrix which has the dimensions of my investigated parameters (to be in the right order), and those dimensions may vary in number.
I could came up with a function based on for-loops, but the problem is that with very large arrays I run out of RAM. I am perfectly aware that this is not the smartest way to do this. I was wondering if there is a smarter way to manipulate such a large array and to do the same job as my function does.
function [Tensor, n_dimensions]=reshape_array(Data,ndim)
n_dimensions=length(ndim);
n_elements=prod(ndim);
reshape_string=[];
for i=n_dimensions:-1:1
if i==1
reshape_string=strcat(reshape_string, ' ndim(', num2str(i) , ')])');
elseif i== n_dimensions
reshape_string=strcat(reshape_string, ' [ndim(', num2str(i) , ')');
else
reshape_string=strcat(reshape_string, ' ndim(', num2str(i) , ') ');
end
end
invert_string=[];
for i=1:n_dimensions
if i==1
invert_string=strcat(invert_string, 'ndim(', num2str(i) , '),');
elseif i== n_dimensions
invert_string=strcat(invert_string, ' ndim(', num2str(i) , ')');
else
invert_string=strcat(invert_string, ' ndim(', num2str(i) , '),');
end
end
reshape_statement=strcat('reshape(Data,',reshape_string);
invert_statement=strcat('zeros(',invert_string,');');
Tens1=eval(reshape_statement);
Tens2=eval(invert_statement);
nLoops=length(ndim);
str = '';
str_dim_tens='';
str_dim_indeces='';
for i=1:nLoops
str = strcat(sprintf('%s \n for i%d=1:',str,i), sprintf('%d',ndim(i)));
if i<nLoops
str_dim_tens=strcat(str_dim_tens,'i',num2str(i),',');
else
str_dim_tens=strcat(str_dim_tens,'i',num2str(i));
end
end
for i=nLoops:-1:1
if i~=1
str_dim_indeces=strcat(str_dim_indeces,'i',num2str(i),',');
else
str_dim_indeces=strcat(str_dim_indeces,'i',num2str(i));
end
end
str = strcat(sprintf('%s \n Tens2(%s)=Tens1(%s);',str,str_dim_tens,str_dim_indeces));
for i=1:nLoops
str = sprintf('%s \n end',str);
end
eval(str)
Tensor=Tens2;
end
as an example,
ndim=[2 3];
Data=1:2*3
[Tensor, n_dimensions]=reshape_array(Data,ndim);
n_dimensions =
2
Tensor =
1 2 3
4 5 6
I would work with more dimensions (e.g. minimum 4) and Data arrays with millions of elements. An example could be M(10,10,10,300000) This is why I was looking for the least computationally expensive method to do the job.
Thank you for your help!
回答1:
From your code, you want to fill the elements in the reshaped array using a dimension order which is the opposite of Matlab's column-major default; that is, you start from the last dimenson, then the second last, etc.
This can be done by reshaping into an array with the dimensions in reverse order (using reshape) and the reversing the order of dimensions back (using permute).
n_dimensions = numel(ndim);
Tensor = reshape(Data, ndim(end:-1:1)); % reshape with dimensions in reverse order
Tensor = permute(Tensor, n_dimensions:-1:1); % reverse back order of dimensions
来源:https://stackoverflow.com/questions/41807207/reshape-potentially-very-large-1d-array-into-multidimensional-matrix-with-variab