debezium关于cdc的使用(下)

筅森魡賤 提交于 2019-11-27 02:28:46

博文原址:debezium关于cdc的使用(下)

简介

debezium在debezium关于cdc的使用(上)中有做介绍。具体可以跳到上文查看。本篇主要讲述使用kafka connector方式来同步数据。而kafka connector实际上也有提供其他的sink(Kafka Connect JDBC)来同步数据,但是没有delete事件。所以在这里选择了Debezium MySQL CDC Connector方式来同步。本文需要使用Avro方式序列化kafka数据。

流程

第一步准备

使用kafka消息中间介的话需要对应的服务支持,尤其需要chema-registry来管理schema,因电脑内存有限就没使用docker方式启动,如果条件ok内存够大的话阔以使用docker方式。所以使用的就是local本地方式。具体下载,安装,部署,配置环境变量我就不在重复描述了,阔以参考官方文档。

第二步启动kafka配套

进入目录后启动bin/confluent start

第三步创建kafka topic

可以通过kafka命令创建topic也可以通过Confluent Control Center 地址:http://localhost:9021来创建topic。我们还是按照上文的表来同步数据,所以创建topic:dbserver1.inventory.demo

第四步创建kafka connect

可以通过kafka rest命令创建也可以使用Confluent Control Center创建。

connect的api命令参考

方便点可以使用crul创建,以下为配置文件

{   "name": "inventory-connector",   "config": {     "connector.class": "io.debezium.connector.mysql.MySqlConnector",     "tasks.max": "1",     "database.hostname": "localhost",     "database.port": "3306",     "database.user": "debezium",     "database.password": "dbz",     "database.server.id": "184054",     "database.server.name": "dbserver1",     "database.whitelist": "inventory",     "decimal.handling.mode": "double",     "key.converter": "io.confluent.connect.avro.AvroConverter",     "key.converter.schema.registry.url": "http://localhost:8081",     "value.converter": "io.confluent.connect.avro.AvroConverter",     "value.converter.schema.registry.url": "http://localhost:8081",     "database.history.kafka.bootstrap.servers": "localhost:9092",     "database.history.kafka.topic": "dbhistory.inventory"   } } 

创建好后可以使用命令查询到或者在管理中心查看。

命令:http://localhost:8083/connectors/inventory-connector

第五步启动同步程序

配置

spring:   application:     name: data-center   datasource:     driver-class-name: com.mysql.cj.jdbc.Driver     url: jdbc:mysql://localhost:3306/inventory_back?useUnicode=true&characterEncoding=utf-8&useSSL=true&serverTimezone=UTC     username: debe     password: 123456   jpa:     show-sql: true   jackson:     date-format: yyyy-MM-dd HH:mm:ss     time-zone: GMT+8 #    time-zone: UTC   kafka:     bootstrap-servers: localhost:9092     consumer:       group-id: debezium-kafka-connector       key-deserializer: "io.confluent.kafka.serializers.KafkaAvroDeserializer"       value-deserializer: "io.confluent.kafka.serializers.KafkaAvroDeserializer"       properties:         schema.registry.url: http://localhost:8081 

kafka消费者

跟上文的处理流程是一样的。只不过DDL和DML分成2个监听器。

package com.example.kakfa.avro;  import com.example.kakfa.avro.sql.SqlProvider; import com.example.kakfa.avro.sql.SqlProviderFactory; import io.debezium.data.Envelope; import lombok.extern.slf4j.Slf4j; import org.apache.avro.generic.GenericData; import org.apache.commons.lang3.StringUtils; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.jdbc.core.JdbcTemplate; import org.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate; import org.springframework.kafka.annotation.KafkaListener; import org.springframework.stereotype.Component;  import java.util.Objects; import java.util.Optional;   @Slf4j @Component public class KafkaAvroConsumerRunner {      @Autowired     private JdbcTemplate jdbcTemplate;      @Autowired     private NamedParameterJdbcTemplate namedTemplate;      @KafkaListener(id = "dbserver1-ddl-consumer", topics = "dbserver1")     public void listenerUser(ConsumerRecord<GenericData.Record, GenericData.Record> record) throws Exception {         GenericData.Record key = record.key();         GenericData.Record value = record.value();         log.info("Received record: {}", record);         log.info("Received record: key {}", key);         log.info("Received record: value {}", value);          String databaseName = Optional.ofNullable(value.get("databaseName")).map(Object::toString).orElse(null);         String ddl = Optional.ofNullable(value.get("ddl")).map(Object::toString).orElse(null);          if (StringUtils.isBlank(ddl)) {             return;         }         handleDDL(ddl, databaseName);     }      /**      * 执行数据库ddl语句      *      * @param ddl      */     private void handleDDL(String ddl, String db) {         log.info("ddl语句 : {}", ddl);         try {             if (StringUtils.isNotBlank(db)) {                 ddl = ddl.replace(db + ".", "");                 ddl = ddl.replace("`" + db + "`.", "");             }              jdbcTemplate.execute(ddl);         } catch (Exception e) {             log.error("数据库操作DDL语句失败,", e);         }     }      @KafkaListener(id = "dbserver1-dml-consumer", topicPattern = "dbserver1.inventory.*")     public void listenerAvro(ConsumerRecord<GenericData.Record, GenericData.Record> record) throws Exception {         GenericData.Record key = record.key();         GenericData.Record value = record.value();         log.info("Received record: {}", record);         log.info("Received record: key {}", key);         log.info("Received record: value {}", value);          if (Objects.isNull(value)) {             return;         }          GenericData.Record source = (GenericData.Record) value.get("source");         String table = source.get("table").toString();         Envelope.Operation operation = Envelope.Operation.forCode(value.get("op").toString());          String db = source.get("db").toString();          handleDML(key, value, table, operation);     }      private void handleDML(GenericData.Record key, GenericData.Record value,                            String table, Envelope.Operation operation) {         SqlProvider provider = SqlProviderFactory.getProvider(operation);         if (Objects.isNull(provider)) {             log.error("没有找到sql处理器提供者.");             return;         }          String sql = provider.getSql(key, value, table);         if (StringUtils.isBlank(sql)) {             log.error("找不到sql.");             return;         }          try {             log.info("dml语句 : {}", sql);             namedTemplate.update(sql, provider.getSqlParameterMap());         } catch (Exception e) {             log.error("数据库DML操作失败,", e);         }     }  } 

数据流程

剩下的就是在inventory库中demo表中增删改数据,在对应的inventory_back库中demo表数据对应的改变。

欢迎关注微信公众号

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!