Non-linear Support Vector Regression with C# and “Accord.NET”

萝らか妹 提交于 2019-12-06 04:46:41

Accord.NET provides a Support Vector Machine learning algorithm for regression problems in the SequentialMinimalOptimizationRegression class. There is an example application for this topic in the sample application's wiki page.

Here is an example on how to use it:

// Example regression problem. Suppose we are trying
// to model the following equation: f(x, y) = 2x + y

double[][] inputs = // (x, y)
{
    new double[] { 0,  1 }, // 2*0 + 1 =  1
    new double[] { 4,  3 }, // 2*4 + 3 = 11
    new double[] { 8, -8 }, // 2*8 - 8 =  8
    new double[] { 2,  2 }, // 2*2 + 2 =  6
    new double[] { 6,  1 }, // 2*6 + 1 = 13
    new double[] { 5,  4 }, // 2*5 + 4 = 14
    new double[] { 9,  1 }, // 2*9 + 1 = 19
    new double[] { 1,  6 }, // 2*1 + 6 =  8
};

double[] outputs = // f(x, y)
{
    1, 11, 8, 6, 13, 14, 20, 8
};

// Create the sequential minimal optimization teacher
var learn = new SequentialMinimalOptimizationRegression<Polynomial>()
{
    Kernel = new Polynomial(degree: 2)
}

// Use the teacher to learn a new machine
var svm = teacher.Learn(inputs, outputs);

// Compute the answer for one particular example
double fxy = machine.Transform(inputs[0]); // 1.0003849827673186

// Compute the answer for all examples 
double[] fxys = machine.Transform(inputs); 
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!